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Motivation

Reinforced

Some advantages of prestressing:

I Durability – no cracks

I Economical – full section is
utilized

I Aesthetics – lighter design

Prestressed
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Motivation

Optimizing topology and then adding prestressing doesn’t make sense...

cable profile determined according to bending moments

optimized beam did not consider the prestressed tendon

Literature: some work on optimizing tendon profiles;
and on TopOpt for given prestressing forces
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Modeling approach

I For initial design,
prestressing is seen as a
collection of forces related
to the tendon’s curvature

I The tendon geometry is
represented by a B-spline

I Control points in X are
fixed, coordinates in Y are
design variables
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Design parametrization

Concrete distribution is determined by filter and projection operations:
1. Density filter

[Bruns and Tortorelli, 2001, Bourdin, 2001] :

ρ̃i =

∑
j∈Ni

w(xj )vjρj∑
j∈Ni

w(xj )vj

2. Tendon-to-concrete filter:

ρ̂i = ρ̃i + (1− ρ̃i )e
− 1

2

(
di
βfil

)µ

3. Heaviside projections – ‘robust’ approach
[Guest et al., 2004, Wang et al., 2011,

Lazarov et al., 2016] :

ρero
i =

tanh(βHSηero) + tanh(βHS (ρ̂i − ηero))

tanh(βHSηero) + tanh(βHS (1− ηero))

ρdil
i =

tanh(βHSηdil ) + tanh(βHS (ρ̂i − ηdil ))

tanh(βHSηdil ) + tanh(βHS (1− ηdil ))
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Problem formulation

Minimize total deformation and tendon force, for a given volume of
concrete and allowable curvature:

min
[ρ,P,Tpre ]

φ = wc (fT
extutotal )

2
+ wTTpre

s.t.: g =

NE∑
e=1

ρ̄dil
e ve

NE∑
e=1

ve

− V ?
dil ≤ 0

κ̃max ≤ κ̄
0 ≤ ρe ≤ 1, e = 1, ...,NE

P ≤ P ≤ P

Keroutotal = fext + fpre

I Density variables ρ and shape variables P are coupled by the
tendon-to-concrete filter
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Implementation

I Concrete model is linear elastic ,,,

E (ρero) = Emin + (Emax − Emin) (ρero)pE

I Continuation on parameters:

pE = 1→ 3 βHS = 1→ 8 µ = 2→ 8

I Heaviside projections with ηdil = 0.4, ηero = 0.6

I Fixed total of 200 iterations, MMA [Svanberg, 1987] .

I Approximate max. curvature:

κ(t) = x(t)′y(t)′′−x(t)′′y(t)′

(x(t)′2+y(t)′2)
3
2

κ̃max =

(
Nκ∑

k=1

κ(tk )pκ

) 1
pκ
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Examples
Simply supported, distributed load, 300×30 mesh

I Seek symmetric design

I Either constant or variable
tendon force

I No curvature constraint

I 4 control points

Constant Tpre = 625, fT
extuext = 223.023, fT

extupre = −222.305

Variable Tpre = 627.7, fT
extuext = 223.810, fT

extupre = −223.831
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Examples
Continuous beam, distributed load, 400×40 mesh

I With or without
curvature constraint

I 7 control points

Constant Tpre = 648.65, fT
extuext = 362.867, fT

extupre = −362.863, |κ|max = 0.0077

Constant Tpre = 648.65, fT
extuext = 414.049, fT

extupre = −319.919, |κ|max = 0.0035

Constant Tpre = 842.94, fT
extuext = 429.930, fT

extupre = −429.932, |κ|max = 0.0035
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The effect of Tpre
Insight from previous work with piecewise linear tendon

Case optimized layout

Tpre = 0.6 × TSTD

φ 8.1490e+03
fT
ext uext 204.6562

fT
ext upre −114.3846

Tpre = 0.8 × TSTD

φ 2.9178e+03
fT
ext uext 211.6173

fT
ext upre −157.6005

Tpre = 1.0 × TSTD

φ 2.0800e+02
fT
ext uext 213.1219

fT
ext upre −198.6995

Tpre = 1.2 × TSTD

φ 4.9464e-05
fT
ext uext 222.6423

fT
ext upre −222.6353

Tpre = 1.4 × TSTD

φ 1.0854e-04
fT
ext uext 251.9399

fT
ext upre −251.9295
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Conclusions and outlook – prestressed concrete

I Coupled shape and topology optimization via dedicated
tendon-to-concrete filter

I Procedure captures the essence of prestressed concrete, leading
to no-tension designs

I Further extensions: explore objective functionals (stresses?);
multiple tendons; ...

More general view on the approach:

I Related to some ideas on TopOpt with pressure loads

I Related to some work on TopOpt with embedded components

I Related to emerging “Geometry Projection” methods,
e.g. Guest, Norato, Guo, ...
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Questions?

Further results and discussion:

I Paper in SMO (piecewise linear tendon), 2018

I Paper in current IASS proceedings
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Examples
Further test cases

Point load

Tpre = 0.5, 1.0, 1.5× TSTD

Two-span beam

Snapshots with Tpre = 0.8× TSTD
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Examples
Further test cases

Setup

Principal stresses

Optimization snapshots
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Examples
Cartoon of a multi-span bridge

Optimizing a multi-span bridge:

Why doesn’t this look “correct”???

Because the construction stages were not considered:

(but that’s another talk – see Amir and Mass, SMO 2017, online)
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Construction?

I 3-D printing?

I Fabric form?

(Thesis of V. Mercuri, Pavia; West, 2006)
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