

Topology optimization of post-tensioned concrete beams

Oded Amir ¹ Emad Shakour ¹

¹Faculty of Civil & Environmental Eng., Technion – Israel Institute of Technology

IASS, July 16-20 2018, MIT

TopOpt of post-tensioned concrete

Motivation

Reinforced

Some advantages of prestressing:

- Durability no cracks
- Economical full section is utilized
- Aesthetics lighter design

dead load (self-weight)

Prestressed

Motivation

Optimizing topology and then adding prestressing doesn't make sense...

optimized beam did not consider the prestressed tendon

Motivation

Optimizing topology and then adding prestressing doesn't make sense...

optimized beam did not consider the prestressed tendon

Literature: some work on optimizing tendon profiles; and on TopOpt for given prestressing forces

Technion Israel Institute of Technology

Modeling approach

- For initial design, prestressing is seen as a collection of forces related to the tendon's curvature
- The tendon geometry is represented by a B-spline
- Control points in X are fixed, coordinates in Y are design variables

Design parametrization

Technion Israel Institute of Technology

Concrete distribution is determined by filter and projection operations:

1. Density filter

[Bruns and Tortorelli, 2001, Bourdin, 2001] :

$$\widetilde{\rho}_i = \frac{\sum\limits_{j \in N_i} w(\mathbf{x}_j) v_j \rho_j}{\sum\limits_{j \in N_i} w(\mathbf{x}_j) v_j}$$

2. Tendon-to-concrete filter:

$$\hat{\rho}_i = \widetilde{\rho}_i + (1 - \widetilde{\rho}_i) e^{-\frac{1}{2} \left(\frac{d_i}{\beta_{fil}} \right)^{\mu}}$$

 Heaviside projections – 'robust' approach [Guest et al., 2004, Wang et al., 2011, Lazarov et al., 2016] :

$$\overline{\rho}_{i}^{ero} = \frac{\tanh(\beta_{HS}\eta_{ero}) + \tanh(\beta_{HS}(\hat{\rho}_{i} - \eta_{ero}))}{\tanh(\beta_{HS}\eta_{ero}) + \tanh(\beta_{HS}(1 - \eta_{ero}))}$$
$$\overline{\rho}_{i}^{dil} = \frac{\tanh(\beta_{HS}\eta_{dil}) + \tanh(\beta_{HS}(\hat{\rho}_{i} - \eta_{dil}))}{\tanh(\beta_{HS}\eta_{dil}) + \tanh(\beta_{HS}(1 - \eta_{dil}))}$$

Problem formulation

Minimize **total deformation** and **tendon force**, for a given **volume** of concrete and **allowable curvature**:

$$\begin{split} \min_{\boldsymbol{\rho},\mathbf{P},\mathcal{T}_{pre}]} & \phi = w_c \big(\mathbf{f}_{ext}^{\mathcal{T}} \mathbf{u}_{total}\big)^2 + w_{\mathcal{T}} \mathcal{T}_{pre} \\ \text{s.t.:} & g = \frac{\sum\limits_{e=1}^{N_E} \bar{\rho}_e^{dil} v_e}{\sum\limits_{e=1}^{N_E} v_e} - V_{dil}^{\star} \leq 0 \\ & \widetilde{\kappa}_{\max} \leq \bar{\kappa} \\ & 0 \leq \rho_e \leq 1, \qquad e = 1, ..., N_E \\ & \underline{\mathbf{P}} \leq \mathbf{P} \leq \overline{\mathbf{P}} \\ & \mathbf{K}_{ero} \mathbf{u}_{total} = \mathbf{f}_{ext} + \mathbf{f}_{pre} \end{split}$$

Density variables ρ and shape variables P are coupled by the tendon-to-concrete filter

Implementation

► Concrete model is linear elastic ©©©

$$E(\overline{
ho}^{ extsf{ero}}) = E_{min} + (E_{max} - E_{min}) (\overline{
ho}^{ extsf{ero}})^{p_E}$$

Continuation on parameters:

$$p_E = 1
ightarrow 3$$
 $\beta_{HS} = 1
ightarrow 8$ $\mu = 2
ightarrow 8$

- Heaviside projections with $\eta_{dil} = 0.4$, $\eta_{ero} = 0.6$
- Fixed total of 200 iterations, MMA [Svanberg, 1987].

Approximate max. curvature:

$$\kappa(t) = \frac{x(t)'y(t)'' - x(t)''y(t)'}{\left(x(t)'^2 + y(t)'^2\right)^{\frac{3}{2}}} \quad \widetilde{\kappa}_{\max} = \left(\sum_{k=1}^{N_{\kappa}} \kappa(t_k)^{p_{\kappa}}\right)^{\frac{1}{p_{\kappa}}}$$

1

Examples

Simply supported, distributed load, 300×30 mesh

- Seek symmetric design
- Either constant or variable tendon force
- No curvature constraint
- 4 control points

Examples

Continuous beam, distributed load, 400×40 mesh

- With or without curvature constraint
- 7 control points

Constant $T_{pre} = 648.65, \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} = 362.867, \mathbf{f}_{ext}^{T} \mathbf{u}_{pre} = -362.863, |\kappa|_{max} = 0.0077$

Constant $T_{pre} = 648.65, \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} = 414.049, \mathbf{f}_{ext}^{T} \mathbf{u}_{pre} = -319.919, \left|\kappa\right|_{max} = 0.0035$

Constant $T_{pre} = 842.94, \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} = 429.930, \mathbf{f}_{ext}^{T} \mathbf{u}_{pre} = -429.932, |\kappa|_{max} = 0.0035$

The effect of T_{pre}

Technion Israel Institute of Technology

Insight from previous work with piecewise linear tendon

Case			optimized layout
$T_{pre} = 0.6 \times T_{STD}$	$\phi \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{pre}$	8.1490e+03 204.6562 -114.3846	
$T_{pre} = 0.8 \times T_{STD}$	$\phi \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{pre}$	2.9178e+03 211.6173 -157.6005	
$T_{pre} = 1.0 \times T_{STD}$	$\phi \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{pre}$	2.0800e+02 213.1219 -198.6995	
$T_{pre} = 1.2 \times T_{STD}$	$\phi \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{pre}$	4.9464e-05 222.6423 222.6353	
$T_{pre} = 1.4 \times T_{STD}$	$\phi \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{ext} \\ \mathbf{f}_{ext}^{T} \mathbf{u}_{pre}$	1.0854e-04 251.9399 251.9295	

Conclusions and outlook - prestressed concrete

- Coupled shape and topology optimization via dedicated tendon-to-concrete filter
- Procedure captures the essence of prestressed concrete, leading to no-tension designs
- Further extensions: explore objective functionals (stresses?); multiple tendons; ...

Conclusions and outlook - prestressed concrete

 Coupled shape and topology optimization via dedicated tendon-to-concrete filter

- Procedure captures the essence of prestressed concrete, leading to no-tension designs
- Further extensions: explore objective functionals (stresses?); multiple tendons; ...

More general view on the approach:

- Related to some ideas on TopOpt with pressure loads
- Related to some work on TopOpt with embedded components
- Related to emerging "Geometry Projection" methods, e.g. Guest, Norato, Guo, ...

Questions?

Further results and discussion:

- Paper in SMO (piecewise linear tendon), 2018
- Paper in current IASS proceedings

References I

Bourdin, B. (2001).

Filters in topology optimization. International Journal for Numerical Methods in Engineering, 50:2143–2158.

Bruns, T. E. and Tortorelli, D. A. (2001).

Topology optimization of non-linear elastic structures and compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 190:3443–3459.

Guest, J. K., Prévost, J. H., and Belytschko, T. (2004).

Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61:238–254.

Lazarov, B. S., Wang, F., and Sigmund, O. (2016).

Length scale and manufacturability in density-based topology optimization. Archive of Applied Mechanics, 86(1-2):189–218.

Svanberg, K. (1987).

The method of moving asymptotes - a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24:359–373.

Wang, F., Lazarov, B. S., and Sigmund, O. (2011).

On projection methods, convergence and robust formulations in topology optimization. *Structural and Multidisciplinary Optimization*, 43:767–784.

Examples Further test cases

$$T_{pre} = 0.5, 1.0, 1.5 imes T_{STD}$$

Snapshots with $T_{pre} = 0.8 \times T_{STD}$

Examples Further test cases

TopOpt of post-tensioned concrete

Examples Cartoon of a multi-span bridge

Optimizing a multi-span bridge:

Why doesn't this look "correct"???

Examples Cartoon of a multi-span bridge

Optimizing a multi-span bridge:

Why doesn't this look "correct"???

Because the construction stages were not considered:

Construction?

► 3-D printing?

► Fabric form?

Fig. 5 Some of the many truss designs that can be formed using simple flat, rectangular sheets of fabric as a mold wall. Abb. 5 Einige der zahlreichen Trägeentwirfe, die mit Schalungen aus einfachen, flachen, rechteckigen Gewebetüchern geformt werden können.

(Thesis of V. Mercuri, Pavia; West, 2006)

TopOpt of post-tensioned concrete