

Satisfying stress constraints in density based topology optimization by length scale control

Oded Amir ¹ Boyan S. Lazarov ²

¹Faculty of Civil & Environmental Eng., Technion – Israel Institute of Technology

²Department of Mechanical Engineering, DTU – Technical University of Denmark

WCSMO 12, Braunschweig, June 5 2017

Difficulties with stress constraints

Characteristics of stress-constrained continuum topology optimization:

- Basic engineering requirement: remain linear-elastic, reduce stress concentrations
- Local measure \rightarrow large number of constraints
- Removal of material \rightarrow vanishing of constraint

Difficulties with stress constraints

Characteristics of stress-constrained continuum topology optimization:

- Basic engineering requirement: remain linear-elastic, reduce stress concentrations
- Local measure \rightarrow large number of constraints
- Removal of material \rightarrow vanishing of constraint

Challenge #1: COMPLEXITY

Large number of design variables, large number of constraints

Challenge #2: SINGULARITY

Difficult to capture true optimum by numerical procedures

Successful approaches for constraining stresses

- Consider all local constraints, solve with "active" subsets
- Aggregate local constraints into global stress function, using K-S or *p*-norm functions
- Apply external penalization on stress violations
- Employ nonlinear modeling or artificial damage

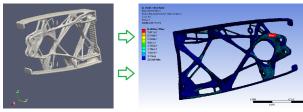
Common to all approaches: the stress / behavior constraint is a function of topological variables

Goal: study the role of length scale

We seek to study the role of length scale:

Stress concentrations / violations are often related to length scale (thickness, curvature):

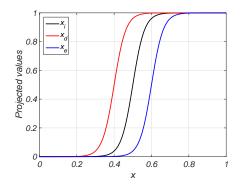
Shape and sizing following topology may be able to deal with most issues, but creating a parametrized model can be painful:



Controlling the length scale

We follow density-based procedures so control of length scale is via filter radius and Heaviside projections:

- ► Well-known density filter (Bruns & Tortorelli 2001, Bourdin 2001)
- "Robust" formulation relying on Heaviside projections (Guest et al. 2004, Sigmund 2009, Wang et al. 2011, Lazarov et al. 2016)



How does length scale influence stresses? The effect of filter radius, $\eta_d = 0.4$, $\eta_e = 0.6$:

	r_{min} , LS \Uparrow compliance \Uparrow stress \Downarrow			
r _{min}	3	5	7	9
LS	1.9	3.2	4.4	5.7
f [⊤] u	$2.235\cdot 10^2$	$2.322\cdot 10^2$	$2.363\cdot 10^2$	$2.445\cdot 10^2$
$\sigma_{V\!M}^{\rm max}$	$6.040\cdot10^{-1}$	$5.449\cdot10^{-1}$	$4.742\cdot 10^{-1}$	$4.393\cdot 10^{-1}$
Layout				

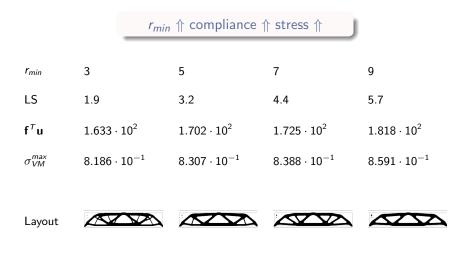
How does length scale influence stresses?

The effect of projection thresholds with r_{min} 7:

	LS	↑ compliance ↑	} stress ↑	
η	$\eta_d = 0.4$ $\eta_e = 0.6$	$\eta_d=0.3$ $\eta_e=0.7$	$\eta_d=0.2$ $\eta_e=0.8$	$\eta_d=0.1$ $\eta_e=0.9$
LS	4.4	6.3	7.7	9.6
f [⊤] u	$2.363\cdot 10^2$	$2.403\cdot 10^2$	$2.454\cdot 10^2$	$2.531\cdot 10^2$
$\sigma_{V\!M}^{max}$	$4.742\cdot 10^{-1}$	$4.765\cdot 10^{-1}$	$4.879\cdot 10^{-1}$	$5.055\cdot 10^{-1}$
Layout				

Stress constraints by length scale control

How does length scale influence stresses? The effect of filter radius, $\eta_d = 0.4$, $\eta_e = 0.6$:



The filter radius as a design variable

- The filter radius is treated as a **design variable**
- > The maximum stress is treated as a function of the filter radius

The filter radius as a design variable

- The filter radius is treated as a design variable
- > The maximum stress is treated as a function of the filter radius

Minimum compliance optimization in two nested loops:

Set initial filter radius, then repeat: 1. Standard minimum compliance (inner loop) 2. Evaluate: $\frac{d\sigma_{max}}{dr_{min}}$ 3. Update: $r_{min}^{k+1} = r_{min}^{k} + \frac{\sigma_{max}^{\star} - \sigma_{max}(r_{min}^{k})}{\frac{d\sigma_{max}}{dr_{min}}}$

The filter radius as a design variable

- The filter radius is treated as a design variable
- > The maximum stress is treated as a function of the filter radius

Minimum compliance optimization in two nested loops:

Set initial filter radius, then repeat: 1. Standard minimum compliance (inner loop) 2. Evaluate: $\frac{d\sigma_{max}}{dr_{min}}$ 3. Update: $r_{min}^{k+1} = r_{min}^{k} + \frac{\sigma_{max}^{\star} - \sigma_{max}(r_{min}^{k})}{\frac{d\sigma_{max}}{dr_{min}}}$

Relying on Bendsøe, Diaz and Kikuchi, 1993:

$$\frac{1}{E}\frac{2(1+\nu)}{3}\boldsymbol{\sigma}^{T}\boldsymbol{M}\boldsymbol{\sigma} \leq \boldsymbol{\sigma}^{T}\boldsymbol{C}\boldsymbol{\sigma} \leq \frac{1}{E}2(1-\nu)\boldsymbol{\sigma}^{T}\boldsymbol{M}\boldsymbol{\sigma}$$

Adaptive filter radius

Layout			
f [⊤] u	$2.291\cdot 10^2$	$2.372\cdot 10^2$	$2.434\cdot 10^2$
σ_{VM}^{max}	$5.069 \cdot 10^{-1}$	$4.472 \cdot 10^{-1}$	$4.142\cdot10^{-1}$
σ^{\star}_{max}	$5.000 \cdot 10^{-1}$	$4.500 \cdot 10^{-1}$	$4.000\cdot 10^{-1}$
Final <i>r_{min} /</i> LS	5.69 / 3.60	8.86 / 5.60	11.28 / 7.13
Initial <i>r_{min} /</i> LS	3.00 / 1.90	5.00 / 3.16	7.00 / 4.43

Adaptive filter radius

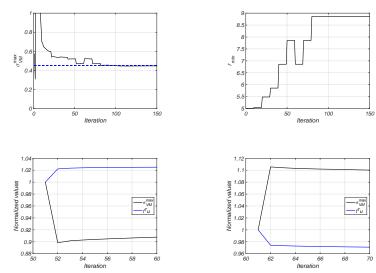
The adaptive filter radius can give superior combinations of compliance and max. stress:

Adaptive $r_{min} = 5.69$ Constant $r_{min} = 5.00$ $\mathbf{f}^T \mathbf{u} = 2.291 \cdot 10^2$ $\mathbf{f}^T \mathbf{u} = 2.322 \cdot 10^2$ $\sigma_{VM}^{max} = 5.069 \cdot 10^{-1}$ $\sigma_{VM}^{max} = 5.449 \cdot 10^{-1}$

Adaptive $r_{min} = 8.86$ Constant $r_{min} = 7.00$ $\mathbf{f}^T \mathbf{u} = 2.372 \cdot 10^2$ $\mathbf{f}^T \mathbf{u} = 2.363 \cdot 10^2$ $\sigma_{VM}^{max} = 4.472 \cdot 10^{-1}$ $\sigma_{VM}^{max} = 4.742 \cdot 10^{-1}$

Adaptive $r_{min} = 11.28$ Constant $r_{min} = 9.00$ $\mathbf{f}^T \mathbf{u} = 2.434 \cdot 10^2$ $\mathbf{f}^T \mathbf{u} = 2.445 \cdot 10^2$ $\sigma_{VM}^{max} = 4.142 \cdot 10^{-1}$ $\sigma_{VM}^{max} = 4.393 \cdot 10^{-1}$

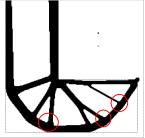
Adaptive filter radius

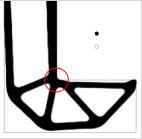


Stress constraints by length scale control

Looking at the required length scale

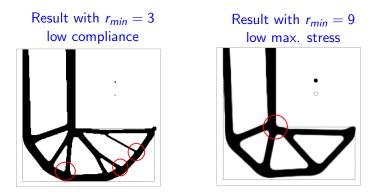
In some cases, compliance and stress require different length scales in different regions of the design:





Looking at the required length scale

In some cases, compliance and stress require different length scales in different regions of the design:



Question: how can separate length scales be accommodated such that compliance is minimized and stress constraints are satisfied?

A spatially varying filter radius

The length scale (controlled by filter radius) can be seen a spatially varying property:

- Define a critical "stress attractor" point
- Define an auxiliary function:

$$\phi(x,y) = \exp(-\left|rac{d(x,y)}{D}
ight|^{ heta}) \quad 0 \le \phi(x,y) \le 1$$

 Parameters: D is the characteristic influenced distance; θ determines the sharpness of φ(x, y)

A spatially varying filter radius

The length scale (controlled by filter radius) can be seen a spatially varying property:

- Define a critical "stress attractor" point
- Define an auxiliary function:

$$\phi(x,y) = \exp(-\left|rac{d(x,y)}{D}
ight|^{ heta}) \quad 0 \le \phi(x,y) \le 1$$

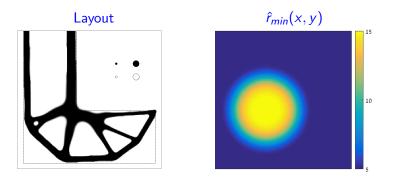
- Parameters: D is the characteristic influenced distance; θ determines the sharpness of φ(x, y)
- Spatial filter radius is defined as:

$$\hat{r}_{min}(x,y) = (1 + \gamma \phi(x,y))r_{min}$$

Parameters: r_{min} is the native filter radius; γ is the increase in filter radius at the attractor point

A spatially varying filter radius

Preliminary result with $r_{min} = 5$, D = 50, $\theta = 5$, $\gamma = 2$:



- Compliance $\mathbf{f}^T \mathbf{u} = 2.456 \cdot 10^2 \approx 2.445 \cdot 10^2 = \mathbf{f}^T \mathbf{u}(r_{min} = 9)$
- Max. stress $\sigma_{VM}^{max} = 3.153 \cdot 10^{-1} << 4.393 \cdot 10^{-1} = \sigma_{VM}^{max}(r_{min} = 9)$

Spatially varying and adaptive filter radius

Initial / Final r _{min}	3.00 / 2.97	3.00 / 4.02	3.00 / 4.88		
D / γ	20 / 2	30 / 2	30 / 3		
σ^{\star}_{max}	$4.000 \cdot 10^{-1}$	$3.500 \cdot 10^{-1}$	$3.000\cdot10^{-1}$		
σ_{VM}^{max}	$3.806\cdot 10^{-1}$	$3.346\cdot 10^{-1}$	$\textbf{2.933}\cdot\textbf{10}^{-1}$		
f [⊤] u	$2.219\cdot 10^2$	$2.262\cdot 10^2$	$2.321\cdot 10^2$		
Layout					
$\hat{r}_{min}(x,y)$	•				
tress constraints by length scale control					

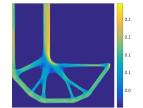
Stress constraints by length scale control

Spatially varying and adaptive filter radius

A look at the stress distributions:



$$r_{min} = 2.97, D = 20, \gamma = 2$$



r

Stress constraints by length scale control

Spatially varying filter on-the-fly

In some cases, location of critical stress concentration is not known \Rightarrow Identify and create spatially varying filter

Spatially varying filter on-the-fly

In some cases, location of critical stress concentration is not known \Rightarrow Identify and create spatially varying filter

Minimum compliance optimization in two nested loops:

Set initial filter radius, then repeat:

- 1. Standard minimum compliance (inner loop)
- 2. Find geometric locations of max. stress violations
- 3. Sort by stress magnitude
- 4. Remove duplicates / overlapping regions
- 5. Generate (a limited number of) auxiliary functions $\phi_i(x, y)$

Final example: U-bracket

 $\begin{array}{c} \text{Constant } r_{min} = 3.00 \\ \sigma_{VM}^{max} = 5.078 \cdot 10^{-1} \quad \mathbf{f}^{T} \mathbf{u} = 1.061 \cdot 10^{2} \end{array}$

Adaptive
$$r_{min} = 3.00 \rightarrow 8.00$$

 $\sigma_{VM}^{max} = 4.125 \cdot 10^{-1} \quad \mathbf{f}^T \mathbf{u} = 1.291 \cdot 10^2$

Spatial $r_{min} = 3.00 \rightarrow 2.78$, D = 20, $\gamma = 2$ $\sigma_{VM}^{max} = 3.862 \cdot 10^{-1}$ $\mathbf{f}^T \mathbf{u} = 1.177 \cdot 10^2$

Spatial automatic $r_{min} = 3.00$, D = 20, $\gamma = 2$ $\sigma_{VM}^{max} = 3.509 \cdot 10^{-1}$ $\mathbf{f}^T \mathbf{u} = 1.174 \cdot 10^2$

Summary & conclusions

- Two approaches for satisfying stress constraints by minimizing compliance with control on length scale:
 - Filter radius is a design variable, determined according to stress constraint
 - Filter radius varies spatially, according to stress level
- For smooth stress distributions, stresses are minimized together with compliance
- Promising results reduction in maximum stresses

Summary & conclusions

- Two approaches for satisfying stress constraints by minimizing compliance with control on length scale:
 - Filter radius is a design variable, determined according to stress constraint
 - Filter radius varies spatially, according to stress level
- For smooth stress distributions, stresses are minimized together with compliance
- Promising results reduction in maximum stresses
- Future work: consistent sensitivity analysis, formally embed into optimization, robust control

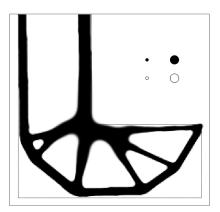
Summary & conclusions

- Two approaches for satisfying stress constraints by minimizing compliance with control on length scale:
 - Filter radius is a design variable, determined according to stress constraint
 - Filter radius varies spatially, according to stress level
- For smooth stress distributions, stresses are minimized together with compliance
- Promising results reduction in maximum stresses
- Future work: consistent sensitivity analysis, formally embed into optimization, robust control

Extras

It may not be necessary to symmetrize the filter operator:

$$f^{T}$$
u = 2.460 · 10² $\sigma_{VM}^{max} = 3.133 · 10^{-1}$



ſ

Extras

• Area and curvature constraints using B-splines:

