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Abstract

A structural optimization approach based on beam modeling is formulated and investigated. Its
computational efficiency and enhanced design freedom place it as a computationally cheap alternative
to continuum topology optimization. The optimization uses a ground structure parametrization and
consists of alternating shape and sizing-topology design phases. The sizing-topology phase controls
the thicknesses of tapered beams. Linear constraints applied in the shape phase provide regularity
and consistency to the structure and enable the shape design variables to benefit from large freedom
of movement. A direct comparison to continuum-based topology optimization shows that the beam-
based optimization can offer significant computational savings while generating designs that perform
similarly to continuum designs. The result of the beam optimization can be utilized also as an effective
starting point for further design iterations on a refined continuum model. The reduced computational
effort facilitates the optimization of high resolution structures without separating to micro and macro
scales, hence non-uniform and non-periodic porous structures can be designed in a single-level opti-
mization process. Furthermore, the beam modeling allows to impose minimum and maximum length
scales explicitly without any additional constraints. The applicability of the suggested approach is
demonstrated on several cases of stiffness maximization and mechanism design.

1 Introduction

Over the last three decades since it was introduced by Bendsøe and Kikuchi [1988], continuum topology
optimization has evolved and matured into a widely accepted computational design method. For
comprehensive reviews of the various approaches and procedures, the reader is referred to recent review
articles [Sigmund and Maute, 2013, Deaton and Grandhi, 2014]. Nowadays, the growing availability of
computational resources together with the rise of Additive Manufacturing (AM) promote the utilization
of high resolution continuum finite element models as the basis for topology optimization.

High resolution topology optimization is utilized primarily in the context of two different design goals:
1) Macro-level design of a single structural component; and 2) Micro-level design of a meta-material. For
the first class of applications, Aage et al. [2014] introduced a parallel computing framework for CPUs. In
the same spirit, adapting topology optimization procedures for parallel computing on GPUs has attracted
considerable interest, and the reported computational times appear very promising [e.g. Wadbro and
Berggren, 2009, Schmidt and Schulz, 2011, Suresh, 2013, Zegard and Paulino, 2013, Challis et al., 2014,
Gavranovic et al., 2015, Wu et al., 2016b]. Typical finite element discretizations used for macro-level
design consist of hundreds or thousands of elements in each spatial dimension, leading to models with up
to hundreds of millions of finite elements, in extreme cases even billions [Aage et al., 2017]. The second
class of applications that essentially relies on the inverse homogenization method [Sigmund, 1994, 2000],
has also benefited from the availability of high performance parallel computing. Examples include the
design of three-dimensional extremal elastic microstructures, based on either CPU [Andreassen et al.,
2014] or GPU [Challis et al., 2014] parallel computing.

An even more challenging design goal combines both macro and micro levels in a single design space,
based on the capability of AM to realize such structures. Bridging macro and micro scales is still very
challenging from a computational perspective because it requires to model the full design domain (macro
level) while allowing very small design features (micro to meso level). In recent years, several methods were
suggested for bridging the scales. Free Material Optimization (FMO) on the macro scale was combined
with inverse homogenization on the micro/meso scale [Schury, 2013, Schury et al., 2012]. Continuity
was achieved by imposing constraints on both scales so that the optimization process leads to a varying
porous layout which is then realized by AM. Alexandersen and Lazarov [2015] suggested a multilevel
approach in which the full design domain is optimized without any length scale separation based on
MsFEM (Multiscale Finite Element Method). However, MsFEM still requires domain partitioning for
an eigenvalue problem formulation; its solution serves repeatedly as a preconditioner for solving the full
system of equations. Hence, the outcome is a varying porous layout with certain periodic properties.
Recently, Groen and Sigmund [2017] revisited the square cell parametrization that was used originally
by Bendsøe and Kikuchi [1988] to derive the first topology optimization solutions. In the first stage, the
density and rotation of each cell are optimized on the macro level based on homogenization and using a
relatively coarse grid. In the second post-processing stage, these values are projected to the actual fine
scale, leading to high-resolution layouts at a low computational cost.
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In both macro- and micro-scale design it is noticeable that the outcome of continuum-based procedures
often consists of beam-like members with various shapes and different sizes. This motivates the
formulation of simplified procedures, based on beam modeling, that can reduce the computational cost
significantly. This is the central aim of the current study. The suggested formulation is based on the
well-known ground structure parametrization consisting of tapered beams with two alternating phases of
shape and sizing-topology. The shape phase controls nodal movements and the sizing-topology controls
the tapered beam nodal thicknesses.

The ground structure parametrization is not new and its utilization in coupled shape-topology
procedures for trusses has been discussed in the literature [Ben-Tal et al., 1993, Achtziger, 2007].
The current study involves tapered beam modeling and presents several contributions in the context
of topology optimization: (1) The ability to enhance the design freedom by imposing a set of linear
constraints for the coordinated movement of nodes, while providing regularization to the optimized
structures; (2) The ability of the suggested scheme to obtain high quality topological layouts with low
computational cost, and its direct and fair comparison to continuum procedures; (3) The ability to suggest
solutions for complex problems such as non-periodic high resolution designs and the explicit imposition
of a maximum length scale; (4) The consistent and differentiable treatment of the singularity associated
with tapered beam formulations, following a power series approximation [Cleghorn and Tabarrok, 1992].

The outline of the paper is as follows: In Section 2, the structural modeling of the tapered beam
ground structure is explained, including a discussion on the singularity of the prismatic case and how it
is resolved in a differentiable manner. Optimization based on the alternating shape and sizing-topology
optimization process is presented in Section 3. Then, Section 4 describes an objective approach for
comparison to continuum-based optimization procedures. Numerical examples are presented in Section
5, including both macro-level designs and high resolution fine scale designs without length scale separation.
Finally, some conclusions, insights and implications are presented in Section 6.

2 Structural modeling

As the optimization procedure is based on a discrete ground structure parametrization, it is essential to
gain enough design freedom so it can emulate effectively the continuum approach. One of the measures
to achieve this goal is by using tapered beam members to construct the ground structure. The tapered
beam formulation is hereby presented.

2.1 Tapered beam formulation

The beam stiffness is modeled using the Euler-Bernoulli assumption of zero shear deformation. Extending
the formulation to consider also shear deformations is not a difficult task, yet it has been observed
during numerical studies that shear deformations have little influence on the outcome of the optimization.
Derivation of the stiffness matrix of the tapered beam follows the common flexibility method as described
in Weaver and Gere [2012] and in similar textbooks; it is verified by comparing to Eisenberger [1991].
For a linearly tapered beam as presented in Figure 1, the stiffness matrix is given by

Figure 1: A parametrized linearly tapered beam

Km =



s11,ex 0 0 −s11,ex 0 0
0 s22,ex s23,ex 0 −s22,ex s26,ex

0 s23,ex s33,ex 0 −s23,ex s36,ex

−s11,ex 0 0 s11,ex 0 0
0 −s22,ex −s23,ex 0 s22,ex −s26,ex

0 s26,ex s36,ex 0 −s26,ex −s36,ex + s26,exL

 (1)
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with the following coefficients,
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− c
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where L is the beam member length; hj and hk are thicknesses at the ‘j’ and ‘k’ nodes, respectively;

h̄ =
hj+hk

2 is the average member thickness; c = hk − hj is the tapering difference; E is the elasticity
modulus; b is the beam width orthogonal to the beam plane; the varying thickness along the beam h(ξ)
is defined as: h(ξ) = h̄+ c(ξ/L); and the cross-section moment of inertia is given by I(ξ) = bh(ξ)3/12.

The above stiffness matrix is set in the local coordinate system of the beam member. Transferring into
global Cartesian coordinates system is executed by multiplication with the rotation matrix. Denoting
the node coordinates by xj , yj , xk, yk, the rotation matrix is formulated as:

Lx = xk − xj ; Ly = yk − yj ; L =
√
L2
x + L2

y; cx = Lx/L; cy = Ly/L (8)

R =

 cx cy 0
−cx cy 0

0 0 1

 (9)

Rt =

[
R 0
0 R

]
. (10)

Finally, the stiffness matrix of each member in global coordinates system is given by

Ke = RT
t KmRt (11)

2.2 Dealing with singularity for the prismatic case

The stiffness matrix formulation holds singularity in the prismatic case: c = 0, and small values of c
lead to numerical instabilities. The optimization procedure relates the thicknesses of the beam member
at its edges to the design variables, and the sensitivities are based on derivatives of the stiffness matrix.
Therefore, the stiffness coefficients and their derivatives must not contain any discontinuity with respect
to the tapering difference value c. Out of the various remedies the literature offers to this difficulty, we
chose to implement the method suggested by Cleghorn and Tabarrok [1992]. It is based on switching
to an approximate formulation near c = 0, by expanding the stiffness components to a Taylor series
with respect to the tapering difference parameter c around zero. This method has the advantage of
maintaining a simple analytical formulation in most of the beam tapering range on the one hand, and
ensuring continuity in both the stiffness function and its derivatives on the other hand. As mentioned, the
stiffness matrix is differentiated in the sensitivity analysis process, thus continuity of the first derivatives
has to be guaranteed in the switching point between exact and approximate expressions. This condition
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is achieved by expanding the power series of the approximate formulation up to the second term, yielding
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2
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s33,ap ≈
bE

L

(
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3
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s36,ap ≈
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(
h̄3

6
− 7h̄
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)
. (17)

A smooth super-Gaussian window function is used for switching between exact and approximate
formulations,

smn = (1− w(c)) smn,ex + w(c)smn,ap; ∀m,n = 1...6; w(c) = exp

(
−
∣∣∣∣ cηc
∣∣∣∣β
)

(18)

where ηc determines the neighborhood around c = 0 where switching to the approximate formulation is
necessary. We used values around ηc = 10−4 which have proven to work well, without further adjustments.
Finally, β determines the smoothness of the switching window; it performs well with values in the range
10 < β < 50. The continuity and smoothness of the approximation are shown in Figure 2.
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Figure 2: Analytical and approximate formulations of the s23 component of the stiffness matrix, in the
vicinity of the prismatic case.

2.3 Ground structure parametrization

The ground structure is a well studied parametrization method used almost exclusively for truss layout
optimization, as described in textbooks such as [Bendsøe and Sigmund, 2003] and references therein.
Traditional ground structures have a connectivity index that allows overlapping of members as shown
in Figure 3a. In truss structures such overlapping can be realized; however in the current context of
imitating continuum-based design it is undesirable. Therefore, a ground structure enriched with nodes
on all member intersections is suggested so to prevent overlapping, as shown in the Figure 3b.

(a) (b)

Figure 3: The ground structure parametrization, layout size: 10×5: (a) Traditional ground structure with
overlapping connectivity to the nearest node (b) Enriched nodes ground structure without overlapping.
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2.4 Beam formulation based on static condensation

Static condensation is a well-known technique that is typically used for reducing the order of a static
problem. A detailed description of this method can be found in the FEM and the structural analysis
literature, as in [Bathe, 2006] as well as in [Weaver and Gere, 2012]. The condensed beam in the case
discussed herein consists of a sequence of three linear tapered beam segments, whose formulation was
discussed above. The assembled 12× 12 stiffness matrix of this sequence is rearranged such that internal
free degrees of freedom (DOF) designated with the subscript f, and external restrained DOF designated
with the subscript r, are aggregated such that the static equation of a single condensed beam becomes:[

Kff Kfr

Krf Krr

] [
Uf

Ur

]
=

[
Ff

Fr

]
(19)

where the vectors Ur, Fr contain the displacements and loads of the external DOF respectively, while
Uf , Ff contain the internal displacements and loads respectively. Considering zero internal loads
inside the beam, i.e. Ff = 0, the internal displacements can be expressed as a function of the external
displacements,

Uf = −K−1
ff KfrUr. (20)

Substituting into the second row of (19) yields:(
−KrfK

−1
ff Kfr + Krr

)
Ur = Fr. (21)

Equation (21) is now the condensed static problem to be solved and the term in the parentheses is
considered the condensed stiffness matrix.

The motivation for utilizing static condensation as a method for the beam-based formulation is the
enhancement of the design space and the design freedom, with only a limited additional computational
cost. As mentioned above, each of the three segments is formulated as a linear tapered beam, as illustrated
in Figure 4. The inner segment shares its nodal thicknesses with its two neighboring side segments. The
sizing of the condensed beam is therefore determined by four thickness values that are associated with
physical design variables. In the current implementation, the outer segments have equal length determined
according to a partitioning ratio rL, that is the ratio between the length of the side segments and the
length of the whole beam: L1 = L3 = rLL, L2 = (1−2rL)L. Adding this ratio as another design variable
can be considered as a future enhancement. This formulation requires to cautiously derive consistent
sensitivity analysis for both shape and sizing variables, as will be detailed in the next section.

Figure 4: A condensed beam consisting of three tapered segments. The external nodes are denoted j, k;
the internal nodes are 2, 3; the four thicknesses are hj , hk, h2, h3; and the designated internal (free) and
external (restrained) DOF are f1, ..., f6; r1, ..., r6.

3 Beam-based shape and sizing-topology optimization

The limited design freedom of the discrete parametrization is further enhanced by utilizing two
optimization phases of shape and sizing-topology. The two optimization phases are applied on the enriched
ground structure discussed above. We employed the alternating approach suggested by Ben-Tal et al.
[1993] and later developed and examined by Achtziger [2007]. The overall workflow of the optimization
scheme is presented in Figure 5.

Achtziger [2007] demonstrated how an alternating scheme with orthogonal shape and sizing design
updates can terminate with no solution. The suggested remedy is the formulation of a ’master-slave’
relation where the shape phase is updated only after the sizing phase converged to a global minimum.
Applying such a scheme is possible for a truss-based ground structure as shown by Gil and Andreu [2001].
In each sizing optimization phase, global optimality is guaranteed – this is a well-known attribute of the
truss sizing problem. However, for a beam-based ground structure global optimality for the sizing phase
cannot be guaranteed. Thus herein we resort to using a simple numerical convergence criterion. Though
it might be considered heuristic, numerical experiments have demonstrated satisfactory results.
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Figure 5: Description of the alternating master-slave optimization process with both shape and
sizing-topology phases.

3.1 Shape optimization problem formulation

The shape optimization phase is performed according to the following problem formulation:

min
x

f(x)

s.t.

nm∑
i=1

bh̄iLi(x)− V ? ≤ 0

Adx− b ≤ 0

xmin ≤ x ≤ xmax

with: K(x)u = p.

(22)

The objective function is f(x), that in the current context represents either compliance or a certain
target displacement; nm is the number of members in the ground structure; b is the thickness of the
2-D domain; h̄i is the mean thickness of the i-th member; Li(x) is the length of the i-th member, that
depends explicitly on the shape variables; V ? is the available volume; Ad and b are the linear adjacency
operator and the nodes adjacency constraints vector respectively, that ensure the coordinated movement
of adjacent nodes, as will be discussed in detail below; and xmin and xmax are global box constraints
for the positions of the nodes. The vector of design variables x contains the coordinates of all nodes in
2-D, therefore it has the size of 2×[number of nodes]. The optimization problem is formulated following
the nested approach, meaning that the static equilibrium equations are solved separately, where p is the
external load vector; K is the stiffness matrix; and u is the displacements vector.

The construction of the linear constraints set starts by defining a neighborhood with a fixed radius
Rn prior to the optimization in the initial ground structure, as shown in Figure 6. The value of Rn
determines how many nodes are associated in the constraints set, and therefore it affects the regularity
level of the structure. Two design variables xl and xm denote the same type of coordinate (i.e. either
X or Y in 2-D) of two different nodes: a specific node l and its current neighbor m. The value of the
relevant entry in Ad is computed as follows:

Adl,m =


−1, if l = m.

1, if l 6= m and rl,m ≤ Rn
0, otherwise

(23)

The position of any neighboring node m with respect to a specific node l is bounded between bl,min and
bl,max as illustrated in Figure 6. These values are the entries of b in the relevant row and sign. Thus, the
inequality size is twice the number of interactions between nodes, as determined by the size of Rn. Once
for all bl,min and once for all bl,max.

We chose the Sequential Linear Programming (SLP) to solve the shape optimization phase because
its capability of handling a large set of linear constraints with little effect on the computational burden.
In an SLP procedure, a sub problem is formulated within each design iteration, based on a linearization
of the objective function with respect to the design variables, inside predetermined move limits. The sub
problem is solved by a standard interior-point Linear Programming solver in MATLAB. The advantage
of using SLP for the shape optimization phase is discussed further in Section 3.4.

3.2 Sizing-topology optimization problem

The sizing-topology optimization formulation is similar to the traditional truss ground structure sizing
problem with a volume constraint, as discussed in structural and topology optimization literature [e.g.
Bendsøe and Sigmund, 2003, Christensen and Klarbring, 2009]. Unlike the truss-based ground structure
characterized by a single design variable for each member, herein the design space is enhanced by using
one of the following two formulations:
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Figure 6: A specific node l (black), its neighboring nodes (gray), and the bounds bl,min and bl,max
constraining neighbors movement.

1. Each member is a linear tapered beam as illustrated in Figure 1:

min
ρ

f(ρ)

s.t. g(ρ) =
nm∑
i=1

bh̄i(ρ2i−1, ρ2i)Li − V ? ≤ 0

ρmin ≤ ρ ≤ ρmax

with: K(ρ)u = p

(24)

The vector of design variables ρ contains scaled mathematical variables that for this formulation
relate to the thicknesses of each i-th member end nodes j and k:

hij = h2i−1 = hmin + (hmax − hmin)ρ2i−1 (25)

hik = h2i = hmin + (hmax − hmin)ρ2i (26)

h̄i = (h2i−1 + h2i)/2 (27)

2. Each member is composed of three linear tapered beam segments as shown in Figure 4:

min
ρ

f(ρ)

s.t. g(ρ) =
nm∑
i=1

bh̄i(ρ4i−3, ..., ρ4i)
TLi − V ? ≤ 0

ρmin ≤ ρ ≤ ρmax

with: K(ρ)u = p

(28)

where the mean thicknesses and lengths of the internal segments are defined as:

h̄Ti =
[
h̄i,1, h̄i,2, h̄i,3

]T
(29)

h̄i,1 = (h4i−3 + h4i−2)/2 (30)

h̄i,2 = (h4i−2 + h4i−1)/2 (31)

h̄i,3 = (h4i−1 + h4i)/2 (32)

Li = [Li1 , Li2 , Li3 ]T . (33)

This formulation utilizes static condensation as discussed above. The four thicknesses of each i-th
member are related to the scaled design variables: ρ4i−3, ..., ρ4i, with the same relation as in the
single tapered beam formulation. This formulation doubles the size of the sizing-topology design
space and therefore enhances the design freedom.

In the context of the objective function, we used two alternatives for the functional dependency of the
physical variable –namely the thickness h of a beam cross-section at a certain point–on its corresponding
mathematical design variable ρ:

1. A linear function dependency:

h(ρ) = hmin + (hmax − hmin)ρ. (34)

With this setting, the design variables can reach zero values. For allowing topological design changes,
hmin needs to attain a very small value. Then, when the mean thickness of the member reaches
hmin, it may be considered as an eliminated member, thus a topological change occurs. Nonetheless,
as with continuum topology optimization, the small member stiffness is still considered in the state
equation for numerical purposes and no reconstruction of the ground structure is performed.
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2. A penalized function dependency: Although the linear function is capable of controlling the
structural topology, this setting does not always succeed in eliminating all thin members, as
demonstrated in Figure 8b. The difficulty with eliminating thin members was also observed by
Ramos Jr and Paulino [2016] who suggested a discrete filtering process. In a different context, Groen
and Sigmund [2017] used a smooth Heaviside function to filter out small details in microstructural
layouts. A penalizing projection function is formulated using a Sigmoid function with a threshold
value to improve the so-called topological decision. Then the stiffness is evaluated by the penalized
thickness while the volume is related to the linear thickness. Hence thickness values in the penalized
range are not beneficial. Similarly to many other filtering methods, this projection function uses
a mathematical thickness h = hmaxρ and projects it onto a physical thickness h̃, while penalizing
all thicknesses below the predefined minimum thickness hmin. For preventing an ill-conditioned
structural analysis, a small minimum value is maintained for penalized thicknesses, hε = 10−9.
We found that with the Sigmoid function the optimization process is more stabilized with less
tendency to oscillate compared to other filtering methods. The continuous penalization procedure
herein utilizes the aforementioned smooth differentiable Sigmoid function, given by the following
expressions (see also Figure 7):

h(ρ) = hmaxρ

h̃(ρ) = hε + S (h(ρ), hmin, hmax, βs) (35)

S (h, hmin, hmax, βs) =

h

[
1 + e

−βs
(

1−hmin
hmax

)]
1 + e

−βs
(

h−hmin
hmax

) .

The value of βs serves as the projection sharpness factor. A low value of βs typically results in a
minor influence of the penalization. Then some thin members are maintained with intermediate
thickness, resulting in an inconsistent structure. Using high values of βs may cause the optimization
to oscillate. It was found through numerical testing that a value in the range [8, 64] leads to
satisfactory results, as demonstrated on Figures 7 to 9. A continuation approach that updates βs
gradually every few iterations is utilized in order to avoid divergence of the optimization.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0
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0.02
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0.06

0.07

0.08

Figure 7: Sigmoid penalty function of a mathematical thickness h projected to a physical thickness h̃.
hmax = 0.08, hmin = 0.0096 βs = 8 solid blue, βs = 32 dashed red, βs = 64 dash-dotted green. The
dotted line is the h = h̃ line.

Figures 8b and 8d present the optimized layouts of a fixed cantilever beam with a concentrated load on
the far end corner. The setup of the problem is illustrated in Figure 8a. A 6×3 grid is used for the ground
structure. Clearly, with the penalized function (Figure 8d, and Figure 8c with the complete underlying
ground structure), the optimized layout exhibits a cleaner and more regularized topology, compared to
the result with a linear dependency without penalization (Figure 8b). This shows the benefit of using
the penalization (35) for obtaining clear topological designs using beam layouts.

Figure 9 illustrates the influence of the Sigmoid penalty function. The circles laying on the penalty
function plot are the optimized thicknesses of the cantilever beam problem. The thicknesses are either
distributed above hmin or concentrated at hε, meaning they are practically eliminated from the structural
layout.

3.3 Sensitivity analysis

Adjoint sensitivity analysis is used for computing the derivatives of functionals involving state variables.
We consider two objective functionals of this type: 1) Minimum compliance design, i.e. f = pTu, where p
is the external force vector (considered to be design independent) ; 2) Maximize the output displacement
of a compliant mechanism, i.e. f = lTu, where l is a unit vector whose value is 1 at the output degree
of freedom and zero elsewhere. For the minimum compliance problem, the adjoint vector is identical to
the displacement vector: λ ≡ u. For the output displacement problem, the adjoint vector is the solution
of the linear system KTλ = l. Once the adjoint vector is determined, the derivative is computed for each

design variable as ∂f̂
∂zi

= −λT ∂K∂zi u. Specific details regarding the term ∂K
∂zi

are provided in the following.
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(a)
(b) (c)

(d)

Figure 8: Demonstrative minimum compliance optimization of a cantilever beam: (a) Problem setup,
grid: 6 × 3, V ? = 0.3V , hmin = 0.0096, hmax = 0.08; (b) Linear dependency between design variables
and beam thicknesses without penalization; (c) Penalized dependency between design variables and beam
thicknesses, complete ground structure is presented; (d) Same as (c) but without displaying the penalized
members.
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Figure 9: Optimized member thicknesses of the above 6 × 3 cantilever problem, laying on the Sigmoid
penalty function plot with βs = 20.

3.3.1 Differentiation with respect to shape variables

As mentioned above, the shape design variables are simply the node coordinates. Because each node is
connected to more than one member, an assembly summation is applied to collect the contributions of
sensitivities from all members connected to a certain node. For the objective functional we have

∂f

∂zi
= −

∑
e∈Ni

λe
∂Ke

∂zi
ue (36)

where zi represents any node coordinate at the end of a member, zi = {xj , xk, yj , yk} and Ni is the set
of members e connected to the node. In relation to Eq. (11), the derivative of a member stiffness matrix
with respect to a certain design variable is given by

∂Ke

∂zi
=

∂

∂zi

(
RT
t KmRt

)
=
∂RT

t

∂zi
KmRt + RT

t

∂Km

∂zi
Rt + RT

t Km
∂Rt

∂zi
. (37)

Then, the the stiffness matrix derivatives in local coordinates and of the rotational matrix are

∂Km

∂zi
=
∂Km

∂Lm

∂Lm
∂zi

(38)

∂Rt

∂zi
=
∂Rt

∂Lm

∂Lm
∂zi

+
∂Rt

∂Lz

∂Lz
∂zi

; ∀z = x, y (39)

where Lm is the length of the particular member. Finally, the explicit components of these derivatives
are straightforward based on Eqs. (8) through (11).

As for the volume constraint in the shape optimization problem (22), it involves only straightforward
derivatives of the member length Lm with respect to a certain node coordinate. These again are found
based on the relations in Eq. (8).

3.3.2 Differentiation with respect to sizing-topology variables

In the following we will consider the explicit derivatives with respect to a certain sizing-topology variable
denoted ρn, that corresponds to the cross-section thickness at a certain point. As opposed to the case of
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shape variables, the rotation matrix does not depend on the design, giving

∂Ke

∂ρn
= RT

t

∂Km

∂ρn
Rt. (40)

Based on the switching between exact and approximate stiffnesses according to Eq. (18), the stiffness
matrix derivative is given by

∂Km

∂ρn
=
∂Km,ex

∂ρn
(1− w)−Km,ex

∂w

∂ρn
+
∂Km,ap

∂ρn
w + Km,ap

∂w

∂ρn
(41)

The switching window function w(c) is characterized by zero derivatives in all the range except near
(−ηc, ηc) where the transition from zero to one occurs. However, due to the continuity requirement, the
value of ηc is chosen such that at c(ρn) = ±ηc, we have Km,ex = Km,ap. Hence, the general form of
derivative can be reduced to:

∂Km

∂ρn
=
∂Km,ex

∂ρn
(1− w) +

∂Km,ap

∂ρn
w. (42)

The derivatives of the local stiffness matrix depend on the relation between the effective thickness
and the underlying mathematical design variable. For the linear dependency as in Eq. (34) we have

∂Km

∂ρn
=

(
∂Km

∂h̄

∂h̄

∂hn
+
∂Km

∂c

∂c

∂hn

)
∂hn
∂ρn

(43)

∂hn
∂ρn

= hmax − hmin (44)

whereas the expressions for ∂Km

∂h̄
and ∂Km

∂c can be deduced from Eqs. (2) through (7) and Eqs. (12)

through (17). Furthermore, the expressions for ∂h̄
∂hn

and ∂c
∂hn

are straightforward based on the linear
tapering.

In a similar manner, when the thickness is penalized according to Eq. (35), hn serves as an intermediate
variable while h̃n is the actual thickness, yielding

∂Km

∂ρn
=

(
∂Km

∂h̄

∂h̄

∂h̃n
+
∂Km

∂c

∂c

∂h̃n

)
∂h̃n
∂hn

∂hn
∂ρn

(45)

∂h̃n
∂hn

=
∂S

∂hn
=

[
1 + e

−β
(

1−hmin
hmax

)] [(
βhn
hmax

+ 1
)
e
−β

(
hn−hmin

hmax

)]
[
e
−β

(
hn−hmin

hmax

)]2 (46)

∂hn
∂ρn

= hmax (47)

The volume constraint derivatives are obtained directly from the problem formulations (22), (24),
(28) without penalization. For the case of a linearly tapered beam as in (24), the derivative with respect
to the underlying mathematical variable is given by

∂g

∂ρn
=
bLm

2
(hmax − hmin) (48)

where Lm is the beam member length which one of its ends sections is controlled by ρn.

3.3.3 Sensitivity analysis of the condensed beam formulation

In formulation (28), static condensation is used for deriving the member stiffness matrix in local
coordinates. We calculate the sensitivities by differentiation of the full 12 × 12 stiffness matrix from
Eq. (19). It was found through numerical tests that utilizing direct differentiation of the condensed
stiffness matrix from (21) can become ill-conditioned for penalized thin members, presumably because

this formulation involves the quadratic-inverse term:
∂K−1

ff

∂zi
= −K−1

ff
∂Kff

∂zi
K−1
ff .

In the solution of the equilibrium and adjoint equations, the displacements and adjoint variables of
the external DOF, ur and λr are found. Then the displacements and adjoint variables of the internal
(condensed) DOF are computed on the member level:

uf = −K−1
ff Kfrur (49)

λf = −K−1
ff Kfrλr. (50)

Thus, the full displacements and the full adjoint vectors of each composed member are obtained:

ue =

[
uf
ur

]
(51)

λe =

[
λf
λr

]
. (52)
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The result can be plugged in to the sensitivity expression for a full composed member e that has 12 DOF,

∂f

∂zi
= −λe

∂Ke

∂zi
ue (53)

where zi represents a generic design variable. The derivatives of each part of the stiffness matrix Ke can
be obtained based on the previous subsections, composing the complete derivative

∂Ke

∂zi
=

[
∂Kff

∂zi

∂Kfr

∂zi
∂Krf

∂zi
∂Krr
∂zi

]
(54)

where the same approach is used for both shape and sizing-topology sensitivity analysis.
The volume constraint sensitivities in the case of the condensed beam are derived similarly to (48)

based on Eqs. (29) through (33). Yet, they are calculated for each segment instead of the whole member.
Finally, the formulations of both shape and sizing-topology sensitivity analysis have been verified by
comparison to finite differences.

3.4 Solution procedures

Two of the most common gradient-based methods for solving structural optimization problems are
Optimality Criteria (OC) procedures and the Method of Moving Asymptotes (MMA, [Svanberg,
1987]). OC procedures can be very efficient for problems such as minimum compliance because the
volume constraint is a continuously decreasing function of the Lagrange multiplier [e.g. Bendsøe and
Sigmund, 2003]. However, for the shape optimization phase and for problems such as the compliant
mechanism this is not the case. Thus, more general procedures such as MMA or other mathematical
programming methods must be utilized [Bendsøe and Sigmund, 2003]. The MMA method gained
high popularity in structural optimization, particularly for density-based topology optimization, and
it can efficiently solve relatively complex problems. However, MMA may not be suitable for handling
problems such as (22) because of the presence of a large set of linear constraints. In such cases, generic
mathematical programming procedures such as Sequential Linear Programming (SLP) or Sequential
Quadratic Programming (SQP) can be more suitable. Therefore, the presented beam-based optimization
scheme with shape and sizing-topology optimization phases utilizes SLP for the shape optimization phase
and either OC or MMA for the sizing-topology optimization phase.

4 Comparison to continuum optimization

The main purpose of this article is to suggest a computationally cheap alternative to continuum topology
optimization. An essential step in the evaluation of the beam-based formulation is its consistent and fair
comparison against state-of-the-art continuum topology optimization procedures. We address this issue
in this section. First we focus on the transformation of the results to a continuum model and then on
the determination of the appropriate length scale for comparison to continuum procedures.

4.1 Projection to the continuum domain

Comparison of the optimized beam-based layouts with a compatible solution obtained by a continuum
approach must be performed in the continuum domain. For this purpose, the discrete optimized layout is
projected into a continuum domain by means of simple image processing tools. The objective function is
then computed on the continuum model for fairly comparing it to standard continuum-based optimization.
We note that the projection can be utilized also as a starting point for further optimization iterations
in the continuum domain. Hence, the beam-based optimization approach can be viewed as a coarse
optimization stage or as an educated guess inherited by a more fine-tuned optimization stage in the
continuum domain.

The steps of the continuum projection are detailed hereby and illustrated in Figure 10 on a half-MBB
beam example:

1. Executing the beam-based optimization and obtaining the optimized layout (Figure 10a), plotted
with true member sizes.

2. ’Patching’ the layout with filled circles to eliminate notches between members near the nodes and
with filled squares on the supports (Figure 10b). The patch size is determined by the thickest
member attached to the node.

3. Printing of the patched layout to an image, while cropping its margins to assure that material will
possess the proper domain so boundary conditions and loads can be applied.

4. Reading the printed image into a matrix of density values, with a predefined resolution that
corresponds to the required length scale (Figure 10c). The procedure for determining the
appropriate length scale is discussed below.
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5. Applying the commonly used density filter [Bruns and Tortorelli, 2001, Bourdin, 2001]. The filter
radius is set to capture the dictated length scale, as discussed below. The margins of the domain
are padded with extra elements for more consistent filtering around the domain margins [Lazarov
et al., 2016, Lazarov and Wang, 2017, Clausen and Andreassen, 2017], see Figure 10d.

6. Applying a Heaviside projection with a predefined threshold and sharp transition to ensure crisp
void-material separation as suggested in [Wang et al., 2011] with η = 0.5 and β = 100 (Figure 10e).

7. Applying loads and supports and solving the finite element analysis on the projected continuum
domain, yielding an evaluation of the objective function.

The sequence of operations described above can be easily performed using standard numerical libraries,
in this particular work we implemented the procedure in MATLAB [MATLAB, 2013].

(a) (b) (c)

(d) (e)

Figure 10: Illustration of the continuum projection process. (a) Result of the beam-based optimization.
(b) Patching nodes, supports and loading positions. (c) Reading the printed layout in a resolution
determined by the minimum length scale; each pixel represents a single finite element. (d) Applying
density filtering. (e) Applying Heaviside projection.

Members tend to overlap in the vicinity of the joints. A 2-D projection eventually flattens those
stacks, thus the calculated volume fraction of the projected continuum layout is lower than the volume
fraction of the discrete layout. The compared volume fraction on the benchmark examples is always the
smaller volume fraction, determined by the continuum projection layout.

4.2 Determining an appropriate length scale

In the beam-based optimization scheme, the minimum length scale is determined explicitly by the
minimum thickness of members, hmin. This parameter is predefined in the optimization definitions and
it can be related directly to manufacturing constraints, such as resolution limitation of an AM facility. In
contrast, determining an appropriate length scale for the continuum approach is not as straightforward.

The suggested definition for the normalized minimum length scale in [Wang et al., 2011] is adopted
for determining the continuum resolution in the projection stage of the beam-based optimization scheme.
Specifically, we refer to Figure 12 for defining the relation between the length scale, the filter radius and
the projection threshold η. Given the minimum thickness hmin and a predefined dilated design threshold
ηdil, one can determine the physical size of the filter radius, Rphys. For a valid finite element analysis,
we require that Rphys covers at least 3 finite elements and this dictates the minimum resolution for a
comparative continuum-based optimization. For example: for a specified ηdil = 0.4 and a minimum
thickness (or length scale) hmin = 0.0118L, according to Figure 12 in Wang et al. [2011], the actual
ratio complies with the relation: hmin/2Rphys ≈ 0.31 such that the physical radius covers three elements.
This gives the necessary value of Rphys = hmin/0.62 = 0.0188L. Hence, the element size is set to:
aFE = Rphys/3 = 0.00625L, and the resolution is: round {L/aFE = 1/0.00625} = 160 elements.

The beam-based approach allows to specify also the maximum length scale explicitly simply by
setting the value for the maximum thickness hmax. It is common to have a reasonable ratio between
minimum and maximum thicknesses in the range of: [0.1, 0.3] for the reasons of structural robustness
and restructurability. As mentioned in the introduction, the maximum length scale affects the design
redundancy and the capability to impose it explicitly will be demonstrated in the examples section.

5 Numerical examples

In this section, we present several results obtained with the beam-based optimization. First, we examine
classical benchmark problems – minimum compliance design of an MBB-beam and compliant mechanism
design. The two examples include a detailed comparison to continuum-based solutions. Subsequently,
we demonstrate the capability to explicitly enforce a maximum length scale on the design. The section
concludes with examples of high resolution designs with pseudo meso-scale members obtained efficiently
due to the beam representation.
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5.1 Minimum compliance of the MBB-beam

In this example we examine the classical MBB-beam problem (see setup in Figure 11). The optimization is
performed on a symmetric half of the domain with the dimensions 3×1, discretized by an enriched ground
structure with 9 × 3 nodes. The problem is solved with two volume fraction constraints: vf = 0.3, 0.5;
and with two beam parameterizations: the linear tapered beam and the three segments condensed beam.
The shape adjacency constraints are set to bl,min = 0.2 and bl,max = 2 with respect to one cell side size
of the ground structure. The penalization function sharpness parameter is set to βs = 32 and a penalty
continuation is applied. The minimum and maximum thicknesses are hmin = 0.0118 and hmax = 0.125,
respectively. For the condensed beam representation, the length ratio of the internal members is set to
rL = 1/3, stating that the condensed beam consists of three equal-length segments.

Figure 11: Dimensions, boundary conditions and loading for the MBB beam optimization problem.

The performance of the beam-based optimization approach is compared to the robust topology
optimization method of Wang et al. [2011]. The dilated design is defined by the threshold value of
ηdil = 0.4 and the corresponding eroded design is defined by ηero = 1−ηdil = 0.6. A penalty continuation
approach is used in order to deal better with the high resolution domain, as suggested in [Bendsøe and
Sigmund, 1999]. The necessary resolution of the continuum domain is found to be 480 × 160 with the
filter radius spanning 3 elements.

Table 1 provides a comprehensive presentation of the results and their comparison to continuum
topology optimization. In the first two rows, the design is superimposed on the complete ground structure
including the eliminated members, to demonstrate the effect of shape optimization. Clearly, for the low
volume constraint the optimization of both beam formulations converged to the same topology with
similar results. Designs with low volume constraint consists mainly on members contributing tensile and
compression stiffnesses. Thus, a ’truss-like’ layout is obtained on both formulations. The corresponding
continuum solution obtained similar values, though the layouts of both beam formulations appear to be
more regularized. When a higher volume constraint is imposed, the results demonstrate a more complex
load transfer. The optimized designs contain therefore several thick and tapered members in both beam
formulations. Both beam-based formulations reached slightly higher compliance than the continuum
approach, presumably because of its inherent design freedom limitation.

Nevertheless, the superior performance of the beam-based approach with respect to computational
time is evident. The total run times of the beam-based optimization were in the range of 11% to 21% of
the run times required for continuum optimization. This reveals the potential of the proposed approach
as a cheap alternative to continuum topology optimization.

5.2 Compliant mechanism design

In this example, we design a compliant mechanism that maximizes the output of a negative displacement,
see Figure 12 for the problem setup. This can be achieved by simply minimizing the displacement at the
output DOF.

Figure 12: Boundary conditions and loading for the compliant mechanism design problem

The beam-based approach is executed on a domain of 2×1 which is discretized by an enriched ground
structure with 4 × 3 nodes. The allowable volume fraction is vf = 0.3. The maximum and minimum
member thicknesses are set to hmax = 0.1458 and hmin = 0.019 respectively. The required resolution
of the continuum domain is 320 × 160 and the filter radius spans 3 elements. The shape adjacency
constraints are set to bl,min = 0.1 and bl,max = 1 with respect to one cell side size of the ground structure.
The penalization function sharpness parameter is set to βs = 64 and a penalty continuation is applied.
The length ratio of the internal segments of the condensed beam is set to rL = 1/3. The ’patching’ stage
is skipped during the projection process, to preserve the minimal sizing of flexible hinges.

The results are presented in Table 2. For all cases, the optimization is performed on the lower
symmetric half of the domain with symmetry boundary conditions on the top side. Accordingly, the
quantitative results correspond to half of the domain but the figures illustrate the full structure.
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Table 1: Minimum compliance of an MBB-beam. Beam-based optimization compared to continuum-based
robust topology optimization. The beam-based compliance objective is designated f . Its corresponding
continuum projection compliance is designated fproj , and the projected volume fraction is vf,proj . The
continuum optimization compliance objective and volume fraction constraint are designated with the
subscript ’cont’.

Volume fraction vf = 0.3 Volume fraction vf = 0.5

Resulting layouts with tapered beam modeling, full ground structure is superimposed

f = 255.0, Iter. = 145, Time: = 41s f = 179.3, Iter.: = 147, Time: = 37s

Resulting layouts with condensed beam modeling, full ground structure is superimposed

f = 257.9, Iter. = 156, Time = 50s f = 188.6, Iter. = 201, Time = 67s

Continuum projection - tapered beam
fproj = 317.7, vf,proj = 0.26 fproj = 237.6, vf,proj = 0.41

Continuum projection - condensed beam
fproj = 322.1, vf,proj = 0.26 fproj = 236.5, vf,proj = 0.41

Continuum topology optimization
fcont = 324.3, vf,cont = 0.26, Iter. = 250, Time

= 322s
fcont = 217.4, vf,cont = 0.41, Iter. = 250, Time

= 323s

While both beam-based formulations obtained similar displacement values, the condensed beam
formulation provides more consistent design which better resembles conventional continuum designs.
This can be attributed to the enhanced design freedom provided by the condensed beam. The negative
displacements obtained for both beam formulations are apparently high. However, this positive result is
somewhat compromised in the projection to continuum. The main reason is that the flexible hinges cannot
be reconstructed well enough in the projection stage due to the flattening of overlapping members. Still,
the most important observation is once again the computational efficiency of the beam-based approach.
The total run times of the beam-based optimization procedures were 13 and 26 seconds, compared to
1874 seconds for the continuum-based optimization.

The superior computational efficiency and the reduced optimized performance can be effectively
balanced in the framework of beam-based optimization that is inherited by continuum topology
optimization. The idea is to continue with the robust optimization procedure of Wang et al. [2011]
after the projection stage. Results with a volume fraction of vf = 0.26 are presented in Table 3.
The optimization ran for 60 iterations with six steps for the continuation of the Heaviside projection.
Clearly, the flexible hinges are reconstructed quickly in a few iterations. Hence, this framework gains
the advantages of both approaches: the computational efficiency of the beam-based approach and the
design freedom of the continuum approach. The final output displacement is slightly better than with
the continuum approach, and the computation time is reduced by roughly 80%.
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Table 2: Compliant mechanism design. Beam-based optimization compared to continuum-based robust
topology optimization. The beam-based displacement objective is designated f . Its corresponding
continuum projection is fproj and the projected volume fraction is vf,proj . The continuum optimization
objective and volume fraction constraint are designated with the subscript ’cont’.

Beam modeling
Continuum
projection

Regular tapered beam

f = −2.60
fproj = −1.34
vf,proj = 0.26
Iter. = 121
Time = 13s

Full ground structure

Condensed beam

f = −2.70
fproj = −1.31
vf,proj = 0.26
Iter. = 181
Time = 26s

Full ground structure

Robust topology optimization - intermediate design

fcont = −2.20
vf,cont = 0.26
Iter. = 300
Time = 1874s
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Table 3: Compliant mechanism design. Results of beam-based optimization inherited by continuum
optimization. The continuum projection shown in Table 2 serves as the starting point for the continuum
robust topology optimization. The displacement objective is designated finher.

Regular tapered beam inherited design Condensed beam inherited design

finher = −2.26
Time = 392s

finher = −2.27
Time = 359s

5.3 Minimum compliance of a cantilever beam with maximum length scale

Another set of problems for which the beam-based approach can be beneficial is the design with a
maximum length scale, for cases where it is essential for improving the structural redundancy, while
compromising the nominal objective value.

In the case of minimum length scale, the continuum approach suggests some well established solutions
such as projection techniques [Guest et al., 2004] and the robust topology optimization method [Wang
et al., 2011, Sigmund, 2009]. The imposition of maximum length scale in continuum topology optimization
is more tricky and was treated by [Guest, 2009], and more recently in [Wu et al., 2016a], [Lazarov et al.,
2016] and [Lazarov and Wang, 2017] and still is the concern of ongoing research. Yet, all the solutions of
the continuum approach handle this issue by implicitly determining the characteristic sizing. Sometimes
such measures also require additional computational effort.

In contrast to the continuum approach, the imposition of length scale by the beam-based approach
is explicit and nearly straightforward. The minimum and maximum length scales are dictated by the
predefined setting of minimum and maximum thicknesses of the beam members. We demonstrate the
maximum length scale imposition utilizing the minimum compliance problem of a cantilever subjected to
concentrated load at the middle of its free edge. The results for two volume fractions vf = 0.3, 0.5 are
shown in Table 4.

The problem is set on a 2× 1 domain, discretized by an enriched ground structure with 8× 5 nodes.
The shape adjacency constraints are bl,min = 0.15 and bl,max = 2 with respect to one cell side size of the
ground structure. The penalty function sharpness parameter is set to βs = 64 and a penalty continuation
is applied. The minimum thickness is set to hmin = 0.0119, dictating the FE resolution of the continuum
domain to be 320 × 160. All the examples are solved using the simpler tapered beam formulation.
Looking at the computational times, it is clear that the beam-based approach offers an economical and
effective means of generating topological layouts with explicit control over the maximum length scale. A
fair comparison between the two approaches is a tough task because maximum length scale is implicitly
imposed in the continuum approach. For a qualitative comparison of the obtained layouts demonstrated
in Table 4, one can examine the results in [Wu et al., 2016a].

5.4 High resolution design

The computational efficiency of the beam-based approach makes it attractive for solving high resolution
design problems. Unlike the continuum approach, it solves them without any length scale separation and
in reasonable time durations. Yet, the beam-based approach loses the design freedom that the continuum
approach has. It is limited inherently to beam members of different sizes and shapes. Nonetheless,
many high resolution optimized design layouts consist of beam-like members. Thus, as demonstrated in
Tables 5 and 6, in such cases this approach offers designs of real porous-like structures, unlike continuum
approach designs that contain periodicity. Rather than topological designs, porous-like structures are
highly populated with structural entities. For this reason, thin member penalization is not appropriate
and was not used in following examples.

Two minimum compliance high resolution problems are examined herein for different volume fractions:
1) Minimum compliance of a fixed cantilever beam subjected to a concentrated load at the far corner; 2)
Minimum compliance of a double clamped beam subjected to two load cases: a concentrated vertical load
at the center and each load case in the opposite direction and location. The optimization is performed
on half of the domain. The setup of both problems is presented in Figure 13. The design obtained by the
beam-based approach for the cantilever problem is compared to the design presented in [Alexandersen and
Lazarov, 2015]. As for the double clamped beam problem, the comparison is with respect to the design
in [Schury, 2013] The high resolution runs are performed on a standard desktop PC, with Intel-i7-6700K
@4GHz CPU and 32GB RAM.

Results of the cantilever beam are presented in Table 5. Applying the beam-based optimization
approach to such high resolution problems demonstrates impressively the computational efficiency.
Moreover, while the multilevel approach of Alexandersen and Lazarov [2015] generates designs with a
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Table 4: Minimum compliance of a cantilever beam with explicit maximum length scale. The regular
tapered beam is used. The beam-based compliance objective is designated f . Its corresponding continuum
projection compliance is designated fproj , and the projected volume fraction is designated vf,proj .

Beam modeling Continuum projection

Volume fraction vf = 0.3

High maximum length scale: hmax = 0.1329
f = 85.3
fproj = 116.4
vf,proj = 0.26
Iter = 136
Time = 47s

Medium maximum length scale: hmax = 0.0664
f = 93.8
fproj = 117.1
vf,proj = 0.27
Iter. = 147
Time = 50s

Low maximum length scale: hmax = 0.0418
f = 108.0
fproj = 127.9
vf,proj = 0.27
Iter. = 154
Time = 57s

Volume fraction vf = 0.5

High maximum length scale: hmax = 0.1329
f = 55.8
fproj = 77.1
vf,proj = 0.41
Iter. = 138
Time = 41s

Medium maximum length scale: hmax = 0.0664
f = 67.1
fproj = 83.4
vf,proj = 0.42
Iter. = 158
Time = 50s

Low maximum length scale: hmax = 0.0418
f = 73.5
fproj = 85.7
vf,proj = 0.43
Iter. = 162
Time = 53s
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(a)

(b)

Figure 13: Boundary conditions and loading for the two high resolution problems. (a) Fixed cantilever
subjected to a concentrated load at the far low corner; (b) A double clamped beam with two load cases
– concentrated vertical loads in opposite directions.

certain imposed periodicity, a non-periodic porous-like structure is obtained by the beam-based approach,
which enables the creation of thicker members in the directions of the principal stress trajectories.
Thus, it appears that the beam-based optimization is capable of generating fine detailed designs that
are complicated to realize by continuum approaches.

Table 5: High resolution design of a fixed cantilever subjected to a concentrated load. The regular tapered
beam is used. The compliance objective is designated f .

Volume fraction vf = 0.3

Grid size 48× 24
DOFs number 6699
f 175.4
Iter. 175
Time 8875s

upper left corner

lower right corner

Volume fraction vf = 0.5

Grid size 48× 24
DOFs number 6699
f 114.1
Iter. 163
Time 10914s

upper left corner

lower right corner

The results of the clamped domain are presented in Table 6. In this example, again a porous-like
design is obtained. Thick members are directed in the principal stress trajectories, such that the structure
can withstand both expected shear and bending loads. This result resembles the design obtained in
the hierarchical approach presented by Schury [2013] with reduced computational resources. Moreover,
no means of bridging between scales are required. Once again, although the beam-based approach is
considered a discrete domain strategy, the material of the optimized design is well distributed, and a
detailed one-level layout is obtained.

6 Conclusions

A structural optimization approach based on beam modeling is introduced and investigated. This
approach utilizes a two-phase optimization scheme, parametrized on a discrete enriched nodes ground
structure with alternating shape and sizing-topology design updates. Two formulations of the beam
members are investigated: 1) A linear tapered beam with two thickness variables at its ends; 2) A
beam composed of three segments with four controlling thicknesses, formulated by static condensation.
A scheme that switches smoothly to an approximated formulation in the vicinity of the prismatic case
prevents numerical instability. Throughout the numerical examples section, the significant computational
efficiency is exposed consistently by comparison to continuum-based topology optimization. For minimum
compliance problems, the consequence is that the beam-based modeling approach offers a computationally
cheap alternative that can generate designs that perform similarly to continuum-based designs. For
problems that involve the synthesis of flexible hinges such as in compliant mechanism design, though
seemingly the method obtains superior results, the performance deteriorates when reconstructing the
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Table 6: High resolution design of double clumped beam subjected to two load cases. The regular tapered
beam is used. The compliance objective is designated f .

Volume fraction vf = 0.3

Grid size 32× 32
DOFs number 5955
f 36.9
Iter. 141
Time 4984s

upper left corner

half domain center

lower middle

Volume fraction vf = 0.5

Grid size 32× 32
DOFs number 5955
f 23.7
Iter. 123
Time 4983s

upper left corner

half domain center

lower middle

layout on the continuum domain. Therefore it is suggested to use beam modeling optimization as an initial
stage for generating an ‘educated guess’ that serves as a starting point for continuum-based optimization.

The beam-based approach offers an explicit means of imposing consistent length scales, especially
maximum length scale which is still a rather open research topic. Thus, by predefining the minimum
and maximum thicknesses of the beam members, the design length scale properties are determined
in accordance with the functional requirements. The main advantage of the beam-based approach
which is the computational efficiency, is further utilized for high resolution problems. Non-uniform and
non-periodic porous-like structures can be designed by performing a single-level optimization process.
A fine detailed design is obtained unlike any of the designs obtained by utilizing a continuum-based
optimization strategy.

The regularity and manufacturability of the optimized layout are kept by constraining nodes
positioning and by controlling members sizing. The nodes positioning constraints preserve the structural
regularity on the one hand and enable large node movements on the other hand, hence enhancing the
design freedom.

Future work will focus on improving the representation and subsequent optimization of flexible hinges,
as well as on various possibilities of extending the approach to 3-D. As high resolution 3-D continuum
topology optimization is extremely costly in terms of computational effort, alternatives using discrete
members can be attractive, especially in the context of AM – as suggested with trusses [Smith et al.,
2016]. Thus we believe that the proposed beam-based shape and sizing-topology scheme is well worth
exploring.
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