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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
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2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract

Topology optimization is a computational method for finding the distribution of material such that an objective function is mini-
mized subject to a set of constraints. In the context of structures, topology optimization aims to find the layout by changing the
shape of the boundary and the number and shape of holes. Such optimized designs ultimately lead to energy savings, efficient usage
of materials, and to faster and sustainable manufacturing. In this paper, we present an optimization approach that is based on ex-
plicit B-spline representation of the design, conforming with CAD standards. This parametrization enables to incorporate explicit
constraints on minimum and maximum areas of holes and on curvatures of boundaries. Therefore practical design considerations
such as avoiding stress concentrations in sharp corners and flexibility with respect to locations and sizes of holes can be embedded
into the optimization problem. Furthermore, control of curvature can simplify machining processes leading to more efficient and
sustainable manufacturing.
c⃝ 2017 The Authors. Published by Elsevier B. V.
Peer-review under responsibility of the scientific committee of the 15th Global Conference on Sustainable Manufacturing.
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1. Introduction

Topology optimization is a computational method for finding the distribution of material such that an objective
function is minimized subject to a set of constraints. It has received considerable research attention since the pioneer-
ing work of Bendsøe and Kikuchi[3]. Various approaches have been proposed for structural topology optimization
and it now has been extended to a wide range of other physical disciplines – motivated by the fact that the method
can ultimately lead to energy savings, efficient usage of materials, and to faster and sustainable manufacturing. For
state-of-the-art reviews of the recent developments in topology optimization, the readers are referred to [7,20] and ref-
erences therein. Furthermore, basic topology optimization capabilities have recently been implemented in commercial
CAD software (e.g. Inventor and NX) for solving practical design optimization problems.

The majority of existing topology optimization procedures are developed within the density-based approach. In this
approach, the design domain is first discretized using finite elements with reasonable resolution. Then mathematical
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programming algorithms and material interpolation functions [2,4] are applied to find the element-wise black-and-
white density (i.e 0 or 1 in each elements) which yields the topology of structure. Although density-based methods
reached remarkable achievements, there are still some challenging issues that justify further explorations. First, it is
worth noting that the density-based geometry/topology representation is not quite consistent with that in current CAD
systems, where the geometries/topologies of structures are often described by geometric primitives such as points,
line segments or B-spline curves. Therefore topology optimization cannot be conducted directly on a CAD platform.
Second, because no geometrical information is embedded in the density-based topology optimization approaches ex-
plicitly, it is difficult to provide precise control over certain structural features – for example minimum and maximum
areas of holes and minimum and maximum curvatures of boundaries. These quantities are typically very important
due to manufacturing considerations. Filtering and projection techniques can be utilized for imposing some of these
manufacturing considerations [e.g. 11,19]. However, they typically require a large number of design iterations and
constraining the geometry of specific parts is not straightforward [5].

In another leading approach – the level-set method [1,24] – the structural boundary is identified by extracting the
zero contour of the level-set function. Geometry information such as the normal outward vector and curvature of the
boundary can be calculated from the level-set function. Nevertheless, level-set methods basically suffer from the same
disadvantage of density-based methods because of their implicit geometry representation which is too quite different
from the explicit one adopted in CAD modeling systems.

This paper describes a topology optimization approach that is based on an explicit representation of the boundary
using B-splines while keeping an underlying fixed grid for finite element analysis. It should be noted that this is
not the first attempt to utilize B-splines on fixed grids for this purpose [8,14,15]. Other explicit representations were
also suggested recently, essentially proposing direct projection of geometric entities [12,17]. Our primary aim is to
establish a direct link between structural topology optimization and efficient manufacturing via CAD modeling, which
enables to conduct topology optimization in a geometrically explicit manner. The main advantage of the proposed
approach is in incorporating explicit geometric constraints, so that design considerations (e.g. areas of holes) and
machining considerations (e.g. curvature radii of holes and boundaries) can be treated in a more flexible way than in
other methods. Furthermore, it generates designs with smooth continuity boundaries that can be integrated directly
into CAD. In the present work, for simulating the mechanical response we utilize the concept of fixed grid finite
element analysis, which is very efficient as remeshing is not required. Nevertheless, more advanced procedures such
as iso-geometric analysis (IGA,[6]) can be used in conjunction with the spline-based boundary representation.

2. B-splines and fixed grid

In this section, we will briefly review the fundamentals of B-splines and the finite element analysis that is performed
on a fixed grid, according to the boundary projected from the B-splines.

2.1. B-spline and Differential geometry

B-splines and non-uniform rational B-splines (NURBS) have become the standard representation in CAD systems
as they have many useful characteristics for representing domain boundaries. B-splines have a local control property
and an individual control point can affect only some local part of the curve due to its formulation. A general B-spline
curve is defined by (1):

C(t) =
n∑

i=0

Ni,p(t)Pi (1)

where Pi are the (n+1) control points, Ni,p(t) are the pth-degree B-spline basis functions, and t is the knot variable [18].
The basis functions Ni,p(t) are defined recursively by Cox-de Boor recursion formula (2):

Ni,0(t) =


0 if ti ≤ t ≤ ti+1

1 otherwise

Ni,p(t) =
t − ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1(t)

(2)
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where ti are knot values which form the knot vector.
If the knot vector does not have any particular structure, the generated curve will not touch the first and last legs

of the control polygon. In our research, a closed B-spline is implemented by forcing the first p control points to be
identical to the last p control points (unclamped curve, [18]). Figure 1 shows an example of closed cubic B-spline
curve with 6 control points. The control points (P7, . . . , P10) are used to close the curve then: C(t = p) = C(t = n).

P1, P7

P2, P8 P3, P9

P4, P10

P5P6

Fig. 1. An unclamped closed cubic B-spline curve.

Green’s theorem gives the relationship between a line integral around a simple closed curve and the area enclosed
by the curve. In this work, we use Green’s theorem to compute the area A of a closed planar parametric curve
C(t) = (x(t); y(t)), given by (3):

A =
1
2

∮
C

(−x′(t)y(t) + x(t)y′(t))dt (3)

As C(t) is a parametric curve and C′(t) and C′′(t) are its first and second derivatives, the curvature function of C(t)
can be computed as follows [10]:

κ(t) =
(C′(t) ×C′′(t))
|C′(t)|3 =

x′y′′ − y′x′′

(x′2 + y′2)3/2 (4)

2.2. Fixed grid finite element analysis

Finite element analysis has played a primary role in the development of CAD. Since at the early stages of a design
process the topology of a structure is not fully developed, a fast means of estimating the response with an acceptable
level of error is required. The fixed grid method has previously been used in problems where either the geometry or
physical property of a structure change with time [13]. In this work, the fixed grid method is used to calculate the
structural response that drives the optimization towards the stiffest structure. In the fixed grid approach, the mesh is
constant and the actual design is superimposed on it. This means that there are elements, which lie inside, outside, or
on the boundary of the structure [13–15].

Owing to the fixed grid geometry of all the finite elements, the stiffness matrix for each element is essentially
fixed and depends only on its material properties – namely the elasticity modulus. For the case of inside and outside
elements these properties are constant, meaning there is either no material or full solid material. For boundary ele-
ments, the properties consist of a combination of the inside and outside properties. The fixed-grid approximation then
transforms the bi-material element into a homogeneous isotropic element where the material property is scaled by the
function (5) of the area of material inside Amat

e within that element Ae = dx × dy.

ρe =
Amat

e

Ae
(5)

Elements which are completely outside the curve, are considered void with density ρe = 0, and have “zero” stiffness,
i.e. E(ρe) = Emin ≈ Emax · 10−6. Elements which are completely inside the curve, are considered solid with density
ρe = 1, and have maximum stiffness, i.e. E(ρe) = Emax. Therefore the stiffness of a boundary elements is:

E(ρe) = Emin + (Emax − Emin)ρe = Emin + (Emax − Emin)
Amat

e

Ae
(6)

Here, we rely on material interpolation functions that are widely used in density-based approaches [2,21]. Kim
et al.[13] assumed that a curve in a cell behaves as a straight line so there are three shapes of boundary cells, where
the inside material can be rectangular; triangular; or trapezoidal. They showed that the error associated with the fixed
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grid approximation reduces as the size of the finite element decreases. Kim and Chang[14] used Green’s theorem to
convert the domain integration into boundary integration, which produces a more convenient expression and gives an
exact area (and area-fraction) calculation.

The algorithm we use in this work treats each finite element independently as a square cell (dx × dy). The basic
assumption of this algorithm is that a B-spline curve can only pass through a finite element in a limited number
of ways. Because the closed curve moves in a clockwise direction, the interaction of a B-spline with a rectangular
element can have a maximum of 14 different topological states [23], as shown in Figure 2. To find the B-spline
intersection with the grid we use in our work a modern technique, based on Bézier clipping algorithm [16]. The
advantages of this technique are its applicability to high order polynomials and the ability to find all solutions within a
specified range of B-spline knots. The calculation process for boundary elements is therefore summarized as follows:

1. Determine whether the node is inside, on, or outside the curve. If all nodes are the same (cell type 13 or 14 in
Figure 2), then ρe = 1 or ρe = 0 respectively.

2. Find the 1st cell type by setting the first knot tp in the B-spline curve. According to the cell type, find the
intersection points (x, y)out and (x, y)last of the curve with the two straight lines of the cell.

3. Use Equation (3) to calculate the area Amat
e between the curve and the cell.

4. Calculate the area-fraction ρe by dividing Amat
e by the cell area Ae.

5. Find the exit point from the cell based on the information: the curve moves in a clockwise direction; the 1st t in
the current cell, tin is known and equal to tout from the previous cell; and the cell type. Set the specified range
[tin, tlast] in the Bézier clipping algorithm and find the new tout.

6. Use Equation (3) to calculate the area Amat
e between the curve and the cell, and then calculate the area-fraction ρe

by dividing Amat
e by the cell area Ae. According to the next cell type, find the new intersection point.

7. Repeat step 5 until tout = tlast as calculated in step 2.

The above procedure is for the curve describing material (Figure 4), if the curve describes a hole then the cell’s
area-fraction will be 1 − ρe (Figure 5).
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Fig. 2. Cell classifications.
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Fig. 3. Example of a curve intersection
with cell type 8.

0.043 0.121 0.000

0.504 0.909 0.053

0.694 1.000 0.427

0.365 0.491 0.204

Fig. 4. Example of area-fraction calculation
for boundary represented by a B-spline of
order 4, with 6 control points.

0.969 0.869 0.000

0.502 0.031 0.838

0.357 0.000 0.490

0.716 0.173 0.694

Fig. 5. Example of area-fraction calculation
for hole represented by a cubic B-splines,
with 4 control points.
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3. Optimization problem formulation

In this work, we aim at finding the stiffest structure consisting of a boundary and holes, while constraining the
areas of holes and the curvature on the boundary of the body and on the holes. This can be posed as follows:

min
P

f (ρ(P)) = fT u

s.t.: g1(P) = (Ab −
Nh∑
i=1

Ai
h) − Ap ≤ 0

G2,i(P) = −Ai
h + Ai

h ≤ 0 i = 1, ..,Nh (7)

G3, j(P) = κ j
b − κb ≤ 0 j = 1, ..,Nsp

G4,i j(P) = −κ j
h,i + κh,i ≤ 0 i = 1, ..,Nh j = 1, ..,Nsp

P < P < P (8)
with: K(ρ(P))u = f

where P are the spatial coordinates of the control points, bounded by P from below and by P from above; ρ are the
material densities on the fixed grid; f is the external forces vector; u is the displacements vector; i is the hole number
and Nh is the number of holes; j is the curvature sampling point number and Nsp is the number of sampling points;
Ab and Ah represent the area “inside” the closed curve in the boundary and hole(s) respectively; Ap represents the real
part area (Ab −

∑Nh
i=1 Ai

h); A and A are the lower and upper target areas respectively; κ and κ are the lower and upper
target curvatures respectively; and K(ρ(P)) is the stiffness matrix, computed according to the densities on the finite
element mesh.

In order to use gradient-based optimization algorithms for solving (7), we derive the first-order gradients of all
functionals involved in the optimization, with respect to the underlying design variables, which are the coordinates
Pi of all control points. Areas and curvatures that are involved in the various constraints can be expressed as explicit
geometrical functions of the control points, based on the definition of the B-spline curves. The compliance objective
however, depends on the response u and its derivative with respect to the control points is computed via the derivative
with respect to density. These derivations are briefly reviewed in the following, where we denote a generic design
variable s that can represent any coordinate xi or yi. Complete details regarding the derivatives can be found in
Yoely[25].

For computing the derivative of the area, we use the relation given by Elber[9] who showed that when C(t) is a
B-spline (1), Eq. (3) can be rewritten as the bi-linear form (9):

2A =
[
x0, x1, . . . , xn−1

]


ϕ0,0 ϕ0,1 · · · ϕ0,n−1
ϕ0,1 ϕ1,1 · · · ϕ1,n−1
...

...
. . .

...
ϕn−1,0 ϕn−1,1 · · · ϕn−1,n−1





y0
y1
...

yn−1


(9)

or simply 2A = XΦY, where X and Y are vectors containing coordinates of Pi, and

ϕi, j =

�
(−N′i,p(t)Nj,p(t) + Ni,p(t)N′j,p(t))dt (10)

This shows that the area is linear with respect to the control points (xi, yi). Furthermore, we can pre-compute all
coefficients of the Φ matrix with the aid of products and integrals of B-spline functions. Then the derivative of the
enclosure area in relation w.r.t. s is:

2A
∂A
∂s
=



[
0, 0, . . . , 1 . . . , 0

]
ΦY if s ∈ X

XΦ
[
0, 0, . . . , 1 . . . , 0

]T
if s ∈ Y

(11)

The derivative of the curvature κ(t) given by Eq. (4) can also be obtained by direct differentiation. However, it is
much more cumbersome and requires symbolic computations that are omitted from this text for the sake of brevity.
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For obtaining the derivative of f with respect to a certain design variable s which can represent any coordinate of
Pi = (xi, yi), we use the chain rule:

∂ f
∂s
=
∂ f
∂ρe

∂ρe

∂s
(12)

It should be noted that all solid and void elements do not have a dependency of their ρe on s because they do not
intersect the curve. From density-based topology optimization, it is well known that the derivative of compliance with
respect to the element density is given by equation (13):

∂ f
∂ρe
= −uT

e
∂Ke

∂ρe
ue. (13)

Using standard density-based topology optimization representations, we have:

∂Ke

∂ρe
=
∂E(ρe)
∂ρe

K0 = (Emax − Emin)K0 (14)

where K0 is the element stiffness matrix corresponding to E = 1.
Following Eq. (27) in Kim and Chang[14], we compute the variation of the area-fraction of a cell cut by a B-spline

curve:
δρe =

1
Ae

∫
C

VT ndt (15)

where the boundary B-spline curve C(t) is perturbed in the direction of the design velocity V and n is the outward unit
normal vector to the boundary n = C′(t)

|C′(t)| . From Silva and Bittencourt[22] we see that:

Vi(t) =
∂C(t)
∂s
= Ni,p(t) (16)

Placing equations (13) and (15) in (12) gives us the analytical expression for the sensitivity analysis of compliance:

∂ f
∂s
= −uT

e
∂Ke

∂ρe
ue

1
Ae

∫
c(t)

VT ndt (17)

4. Numerical Examples

In this section, we present several numerical examples that demonstrate the capabilities of the proposed computa-
tional approach. The optimization problem is solved using a Sequential Linear Programming (SLP) strategy. In all
examples below, the main optimization loop is terminated if the change in the compliance objective is below 1%.

We first examine the design of a cantilever where the load is applied vertically in the lower right corner and the
left edge is supported, see Figure 6. The design domain is assumed to be rectangular and is discretized by a grid
containing 32 × 20 square finite elements (dx = dy = 1.0).

In this example we used two cubic B-splines (p = 3) to describe the boundary and the holes. The boundary is based
on 3 moving control points, one hole (Nh = 1) is represented by 6 moving control points, and Nsp = 100 · (tn − tp).
Control points can move (0 < Px < nelx) and (0 < Py < nelx). The part’s area constraint is Ap = 256 that
corresponds to 40% of the bounding rectangle. Finally, the SLP move limit that determines the maximum change
between design iterations is set according to the iteration number, 4/Iter0.9. Results with various values of the area
and curvature constraints are presented in Figures 9 through 14.

The second example is the design of a half “MBB-beam” where the load is applied vertically in the upper left
corner and there are symmetric boundary conditions along the left edge, see Figure 15. The design domain is again
rectangular and is discretized by a grid containing 60 × 20 square finite elements (dx = dy = 1.0).

We again used cubic B-splines (p = 3) to describe the boundary and the holes. The boundary is based on 4 moving
control points, the holes (Nh = 2) are represented by 6 moving control points, and Nsp = 100 · (tn − tp). Control points
can move (0 < Px < nelx) and (0 < Py < nelx). The part’s area constraint is Ap = 480 that corresponds to 40%
of the bounding rectangle. The SLP move limit is the same as before. Results with various values of the area and
curvature constraints are presented in Figures 17 through 20.
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F

•

Fig. 6. Design domain of the cantilever
example.

Fig. 7. Initial domain represented by B-
splines.

Fig. 8. Initial domain represented by den-
sity on a fixed grid.

Fig. 9. Optimized design with hole cur-
vature constraint κh = −3.

Fig. 10. Optimized design with hole cur-
vature constraint κh = −1.

Fig. 11. Optimized design with hole cur-
vature constraint κh = 0.5.

Fig. 12. Optimized design with hole area
constraint Ah = 120.

Fig. 13. Optimized design with hole area
constraint Ah = 150.

Fig. 14. Optimized design with hole area
constraint Ah = 110, boundary and hole’s
curvature constraints κb = 1 and κh = 1.

F
•

Fig. 15. MBB-beam half design domain with symmetry boundary
conditions.

Fig. 16. MBB-beam with two holes represented by B-splines.

Fig. 17. MBB area constraint. Fig. 18. MBB Boundary and holes curvature constraint |κ| = 2.

5. Conclusions and future work

In this paper, we presented a shape and topology optimization procedure with explicit geometric constraints on
areas and curvatures. The method can lead to optimized layouts that reduce material usage and are tailored to specific
machining parameters – hence contributing to the overall sustainability of the manufacturing process. The design is
parametrized using B-splines while FEA is based on a projection of the shape upon a fixed grid so remeshing is not
necessary. The proposed approach enables flexibility with respect to areas of holes and direct control over curvatures,
two capabilities that are not easy to achieve in widespread density-based and level-set approaches. As a consequence,
both manufacturing limitations (e.g. in the context of machining) and design limitations (e.g. stress concentrations)
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Fig. 19. Min hole area Ah = 200 (Blue holes). Fig. 20. Max hole area Ah = 100 (Orange holes).

can be considered within the design optimization. In future work, the proposed approach will be extended to enable
creating and merging holes during the optimization process. Another goal will be to add control over distances
between holes and between the boundary and adjacent holes.
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