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Abstract This paper presents a new optimization approach
for the design of prestressed concrete beams. The prestress-
ing tendon is modeled as a chain of linear segments that
transfer point forces to the concrete domain according to
the tendon’s angles. The concrete beam is modeled as a dis-
cretized continuum following density-based approaches to
topology optimization. The shape of the tendon and the topol-
ogy of the surrounding concrete are optimized simultane-
ously within a single problem formulation. A special filter-
ing technique is developed in order to ensure that the tendon
is covered by concrete, thus shape and topological variables
are tightly coupled. Several test cases demonstrate the ap-
plicability of the proposed optimization procedure. The de-
formation of the optimized designs due to external loads is
counteracted by the deformation due to prestressing, hence
by tuning the force in the tendon the total deformation can
approach zero. Consequently, the beams exhibit a compression-
only response meaning that the common goal of prestressed
concrete design is achieved.
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1 Introduction

Topology optimization of continuum structures is a compu-
tational methodology for optimizing the distribution of ma-
terial in a given design domain. Various mathematical for-
mulations and numerical approaches have been suggested
throughout the last three decades since the method was con-
ceived by Bendsøe and Kikuchi (1988). Early developments
focusing on the density-based approach are reviewed in the
monograph by Bendsøe and Sigmund (2003), whereas later
developments and comparisons of different approaches can
be found in recent review articles (Sigmund and Maute 2013;
Deaton and Grandhi 2014). The maturity of topology opti-
mization is reflected by its increasing utilization in indus-
try. Particularly, the automotive and aerospace industries use
it extensively for reducing weight and increasing stiffness,
among other goals (Sigmund and Bendsøe 2004; Zhu et al
2015). At the same time, topology optimization has made
only minor impact on traditional structural engineering as
practiced in the construction industry. Examining the spe-
cific case of concrete structures, the cost of manufacturing
complex forms and the difficulty in combining numerical
optimization tools with accurate constitutive models are the
main barriers that need to be overcome. Despite these chal-
lenges, optimizing concrete structures is of great importance
because concrete is the most widely used material (besides
water) and its production is a major contributor to C02 emis-
sions (Mahasenan et al 2003; Flower and Sanjayan 2007;
World Business Council for Sustainable Development 2012;
Stocker et al 2013). The purpose of this paper is to present
a new, simple yet effective approach for topology optimiza-
tion of concrete beams that are prestressed into a compres-
sive state using steel tendons.

Early contributions relating continuum topology opti-
mization procedures to concrete design have focused on the
automatic generation of strut-and-tie models, for example
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Liang et al (2000), Liang et al (2001) and Bruggi (2009).
While initially a linear-elastic material model was consid-
ered by most authors, more elaborate constitutive relations
have been incorporated in recent publications, capturing the
asymmetric response of concrete to tension and compres-
sion. Furthermore, these studies shifted the focus to design-
ing the structure itself, rather than only generating its strut-
and-tie model for analysis. Some studies pose the problem
as a material distribution in a continuum domain, for exam-
ple Liu and Qiao (2011), Victoria et al (2011), Bogomolny
and Amir (2012), Luo and Kang (2012) and Luo et al (2015).
Another class of formulations combines a more realistic si-
multaneous optimization of concrete as a continuum and re-
inforcement that is modeled as additional discrete (or truss-
like) members, see for example Gaynor et al (2012), Amir
(2013), Yang et al (2014) and Bruggi (2016). As the current
contribution involves the shape optimization of steel embed-
ded in concrete, it is worthy to mention also the work by
Kato and Ramm (2010) on shape optimization of reinforce-
ment fibers within a concrete structure.

The topic of prestressed concrete, and specifically the
optimization of tendon geometry, has received only little
attention. The magnitude of tendon forces, the tendon ge-
ometry and the cross-sectional dimensions were optimized
assuming linear-elastic response by linear programming in
the early studies by Kirsch (1972, 1973). Cohn and Lou-
nis (1993) extended the capability of such design procedures
to comply with both ultimate and serviceability limit states
based on nonlinear analysis of the beams. Another interest-
ing approach to optimizing the tendon geometry within a
fixed concrete domain is based on the concept of configura-
tional forces (Eurviriyanukul and Askes 2010, 2011).

In contrast to the contributions mentioned above, the present
paper aims at optimizing simultaneously both the tendon
geometry and the surrounding concrete topology. This is
achieved by modeling the effect of prestressing by means
of the equivalent load method (Moorman 1952). The spa-
tial coordinates of the tendon are subsequently treated as de-
sign variables, alongside the density distribution of the con-
crete continuum. A special filtering technique is developed
in order to guarantee that the tendon is properly covered
by concrete, introducing a strong coupling between shape
and topological variables. The filter developed herein is in-
spired by a previous steel-concrete filter that was formu-
lated for ensuring concrete cover over steel reinforcement
bars in topology optimization of reinforced concrete (Amir
2013). Because the aim is to design prestressed members
that do not exhibit inelastic response, linear-elastic model-
ing of the concrete is possible and the overall computational
procedure can be executed with limited computational re-
sources. This is an advantage compared to procedures that
require either nonlinear finite element analysis or involve a
large number of response constraints. As the tendon can take

any desired shape under certain restrictions on its lower and
upper bounds, the methodology is applicable only to post-
tensioning systems, where a duct is positioned before the
concrete is cast and the tendon is inserted and tensioned af-
ter the concrete has developed sufficient strength. In con-
trast, pre-tensioning systems use straight tendons so there is
no room for optimizing the geometry.

Ultimately, the filtering operation that couples topologi-
cal and shape variables leads to a formulation that is strongly
related to simultaneous approaches studied previously. In
the context of design-dependent loads, Du and Olhoff (2004)
generated the pressure load on the boundary of an evolv-
ing topology using isolines of the density distribution. Lee
and Martins (2012) extended this approach using prescribed
initial void regions leading to the applicability in the case
of multiple pressure vessels. Another related approach was
presented by Zhu et al (2008) who coupled the optimiza-
tion of component locations and the layout of their support-
ing structure. Conceptually, this approach resembles the one
presented in the current contribution. Nevertheless they dif-
fer in various computational aspects as well as in the specific
requirements arising from the design intent.

The remainder of the paper is organized as follows: the
modeling of prestressed concrete using equivalent loads is
reviewed in Section 2. The problem formulation for simulta-
neous shape and topology optimization is presented in Sec-
tion 3, followed by the specific design parametrization and
sensitivity analysis in Section 4 and 5. Finally, several de-
sign examples are presented and investigated in Section 6
and conclusions are drawn in Section 7.

2 Modeling prestressed concrete beams

This section is dedicated to a brief review of the modeling
approach that was followed in the current study. In essence,
a structural beam made of prestressed concrete can be seen
as a member made of plain concrete upon which several sets
of loads are acting: external “live” loads, such as traffic on
a bridge; permanent “dead” loads, such as self-weight; and
internal equivalent loads, arising from the action of the pre-
stressing tendon.

Once the prestressing tendon is locked into its position,
two concentrated forces act upon the beam at its edges in
the locations of the prestressing jacks, admitting compres-
sion forces into the beam. The magnitude of these forces is
equal to the prestressing force and their direction depends
on the geometry of the tendon at its end points. In addition,
throughout the span of the beam, the curvature of the ten-
don creates equivalent forces acting internally on the beam.
In typical design applications, the shape of the tendon – en-
compassing its eccentricity with respect to the beam’s neu-
tral axis and its curvature – is determined such that these
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equivalent forces create a deflection that in principle coun-
teracts the deflection due to the load applied on the beam.
For example, in a simply supported beam with uniform load,
a tendon of parabolic shape will create an upwards deflec-
tion that can cancel the downwards deflection due to the ex-
ternal loads.

In the current study, the tendon geometry is modeled us-
ing a piecewise linear, meaning it is divided into a chain
of line segments. The vertical coordinates of the points in
the piecewise linear approximation are eventually chosen
as shape design variables. Consequently, the internal forces
due to curvature are in fact point forces that can be eval-
uated according to the angle between adjacent linear seg-
ments. This choice of parametrization does not imply any
loss of generality – the optimization approach can easily ac-
commodate any geometric representation of the tendon. A
sketch of the forces acting at end points and at kinks be-
tween linear segments is presented in Figure 1.

Fig. 1 Equivalent forces acting on a beam due to a prestressing tendon,
based on a piecewise linear approximation of the tendon with kinks
between segments.

For the purpose of continuum topology optimization, it
is convenient to represent the concrete domain using a struc-
tured grid composed of square finite elements. Then, the
horizontal distance between two tendon points is chosen to
be constant and the points are located at intersections of the
tendon with vertical lines in the structured grid. In the fol-
lowing description, the index i is assigned to a certain point
on the tendon; Pi is the prestressing force acting on the beam
at point i; yi is the vertical coordinate of the point i; the index
j is assigned to a certain segment of the tendon; lx is the hor-
izontal projection of the length of each tendon segment; and
Tpre is the prestressing force. Force losses along the tendon
are neglected in the current study. Nevertheless, immediate
losses due to anchorage slip, elastic shortening and friction
can be added to the formulation because they depend explic-
itly on the prestressing force, the concrete deformation and
the curvature of the tendon. Furthermore, long-term losses
due to creep, shrinkage and relaxation can also be estimated
based on tendon forces and concrete deformation. Hence the
exact forces along the tendon can be utilized, however it is
not evident that there will be any influence on the design.
Based on the notation above, the interaction between the
tendon and the concrete domain is presented in detail on a
portion of the computational grid, see Figure 2. It should be

noted that the coordinates of the tendon points are calculated
w.r.t. an origin at the bottom left corner of the domain.

Fig. 2 The interaction between the tendon and the concrete domain
based on the equivalent loads method. Top: A portion of the compu-
tational grid; Bottom: A zoom-in on the computation of loads at point
i.

Based on Figure 2, the equations for calculating the pre-
stressing forces acting on the beam are as follows. The length
of the j-th segment is given by

l j =
√
(yi− yi−1)2 + l2

x (1)

and the sine and cosine of the angle θ1, corresponding to the
j-th segment, are

sinθ1 =
yi−1− yi

l j
(2)

cosθ1 =
lx
l j
. (3)

Similarly, for the subsequent segment we have

l j+1 =
√
(yi+1− yi)2 + l2

x (4)

sinθ2 =
yi+1− yi

l j+1
(5)

cosθ2 =
lx

l j+1
. (6)
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Then, the forces acting upon the beam at point i are given by

Pi,x = Tpret × (cosθ2− cosθ1) (7)

Pi,y = Tpret × (sinθ2− sinθ1) (8)

in the X- and Y -directions, respectively. Finally, the pre-
stressing forces are transferred to the nodes of the concrete
domain using the shape functions of the concrete elements.
In the present study a bi-linear approximation of the dis-
placements is used, that reduces to a linear interpolation of
nodal values along the elements’ edges. Therefore, the pre-
stressing forces applied in a certain point along an element
edge can be transferred to the nodes according to the relative
distances from the nodes, see also Figure 3:

P1,x = Pi,x
a−d

a
(9)

P1,y = Pi,y
a−d

a
(10)

P2,x = Pi,x
d
a

(11)

P2,y = Pi,y
d
a
. (12)

Fig. 3 Transferring the loads due to prestressing at point i to the nearest
nodes according to the relative distance.

3 Problem formulation

The problem considered in this paper includes simultaneous
optimization of both concrete distribution and prestressing
tendon geometry. The concrete is modeled as a linear elas-
tic continuum and its response is approximated by means of
finite element analysis. While concrete in general exhibits
nonlinear response, primarily in tension, it is customary to
design prestressed concrete members such that their response
is linear-elastic for service loads – namely the concrete re-
mains uncracked. Nevertheless, the methodology presented
herein can accommodate inelastic material behavior as im-
plemented in several studies concerning reinforced concrete
optimization (Kato et al 2009; Kato and Ramm 2010; Bo-
gomolny and Amir 2012; Amir and Sigmund 2013; Amir
2013). As reviewed in the previous section, the prestress-
ing tendon is modeled by a piecewise linear geometry that

essentially transfers point loads to the concrete medium ac-
cording to the specific tendon geometry. The stiffness of the
tendon itself is neglected for the purpose of design optimiza-
tion.

The main purpose of prestressing the concrete member
is to reduce deformations and subsequent tensile cracking
due to the loads that are applied. In principle, for a valid
design it is expected that the displacements due to external
and self-weight loads, designated herein as uext and usw, will
be balanced by the displacements due to the equivalent pre-
stressing loads, designated herein as upre. One can use the
external force vector fT

ext to quantify the deformation due to
external loads on the surface of the beam that admits the
load – typically its top side – giving the compliance fT

extuext
which is the most common objective functional in topol-
ogy optimization. Similarly, the deformation at the same re-
gion due to self-weight and prestressing can be quantified by
the products fT

extusw and fT
extupre respectively, where fT

ext es-
sentially measures the total deformation. It should be noted
that the magnitude of self-weight forces fsw can be scaled
properly so that fT

extusw will in fact measure the correct de-
formation on the top surface due to self-weight. A reason-
able target is then to minimize the sum of all deformations,
fT
extutotal = fT

ext (uext +usw +upre). If the action of prestress-
ing precisely balances the applied loads, this sum will be
zero. In case the displacements uext and usw are dominant,
fT
extutotal will be positive and its minimization will be mean-

ingful. In case the displacements upre are dominant, fT
extutotal

will be negative and its minimization will lead to flexible
designs that exhibit large deformation due to prestressing.
Consequently, the objective functional to be minimized is
chosen as the square of fT

extutotal .
Following the density-based approach to topology opti-

mization (Bendsøe 1989; Bendsøe and Sigmund 2003), the
full optimization problem formulation is given by:

min
[ρ,y]

φ = (fT
extutotal)

2

s.t.: g =
∑

NE
e=1 ρ

dil
e ve

∑
NE
e=1 ve

−V ?
dil ≤ 0

0≤ ρe ≤ 1, e = 1, ...,NE

yi−h+ c≤ 0, i = 1, ...,NT P

−yi + c≤ 0, i = 1, ...,NT P (13)

with: Keroutotal = fext + fpre + fsw (14)

where ρ is the vector of density design variables that deter-
mine the concrete’s distribution; y is the vector of Y -coordinate
design variables that determine the height of each point on
the tendon; NE and NT P are the number of continuum finite
elements and the number of points on the tendon, respec-
tively; ρ

dil
e is a projected dilated density used for imposing

the volume constraint on the concrete, and is related to the
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mathematical variables ρ and y via filtering and projection
operations, see Section 4; ve is the volume of the e-th finite
element; V ?

dil is the available volume fraction for the concrete
in its dilated configuration; h is the total height of the beam;
c is the size of the clear concrete cover, defining two (top and
bottom) margins in which the tendon cannot be placed – see
Figure 4; and Kero is the stiffness matrix of the eroded con-
crete domain, related to the mathematical variables ρ and y
via filtering and projection operations, see Section 4.

Fig. 4 The feasible region for tendon segments such that a clear con-
crete cover of height c is maintained at the top and bottom of the beam.

As can be seen in (13), no constraints are imposed on the
curvature of the tendons. In principle, it is expected that the
tendons’ shape should converge towards a piecewise-linear
configuration because when the topology converges to a dis-
crete design it essentially interacts with the tendon discon-
tinuously in a series of points. This is visible in the exam-
ples in Section 6. Consequently, the tendon has very high
curvature in some cases – hence posing manufacturing diffi-
culties. Therefore, curvature constraints can be an important
component to be added in future work.

4 Design parametrization

The problem formulation (13) consists of both topological
optimization of the concrete and shape optimization of the
tendon layout. In order to obtain meaningful results where
the tendon is physically embedded into the concrete domain,
the two sets of design variables need to be carefully coupled.
The sequence of operations that is applied to the design vari-
ables in order to obtain the actual physical distribution of
concrete, with minimum length scale control, is described
in this section.

First, the well-known density filter (Bruns and Tortorelli
2001; Bourdin 2001) is applied to the concrete design vari-
ables ρ , yielding the filtered distribution ρ̃

ρ̃i =

∑
j∈Ni

w(x j)v jρ j

∑
j∈Ni

w(x j)v j
(15)

with a linear weighting function

w(x j) = rmin−
∥∥x j−xi

∥∥ (16)

where rmin is the specified filter radius, xi is the position of
the centroid of element i and x j is the position of the centroid

of element j which is in the neighborhood Ni of element i
and thus is assigned a positive weight w(x j).

In the next stage, a special tendon-to-concrete filter op-
eration is performed in order to ensure that the tendon is
properly covered by concrete. The idea is related to a previ-
ous development of a filter that relates the existence of steel
bars to the existence of concrete in their surroundings, in the
context of reinforced concrete topology optimization (Amir
2013). In the current approach, the location of each tendon
segment defines a region to which concrete is projected. The
projection is defined by a Super-Gaussian function,

ρ̂i∈N j = ρ̃i +(1− ρ̃i)e
− 1

2

(
di j
β f il

)µpre

(17)

where ρ̂i is the density of the i-th element after the tendon-
to-concrete filtering; N j is the neighborhood of the j-th ten-
don segment; di j the shortest distance between the center of
the i-th continuum element and the j-th tendon segment; β f il
is an influence length that represents the width of the tendon-
to-concrete filter in the direction perpendicular to the tendon
segment; and µpre is the sharpness of the Super-Gaussian
function. A graphical description of the tendon-to-concrete
filter is presented in Figure 5 and an example of the func-
tion (17) is presented in Figure 6. Using the function (17),
the densities of elements in the vicinity of a tendon segment
are pushed to 1.0 whereas elements that are outside the in-
fluenced region remain unchanged.

Fig. 5 The tendon-to-concrete filter that ensures the tendon will be
properly covered by concrete. The neighborhood N j is defined as
the rectangular domain encompassing the j-th segment of the tendon
through the complete beam height.

In the final stage, we apply smooth Heaviside projection
functions that assists in obtaining a distinct 0-1 (or void-
solid) layout (Guest et al 2004; Xu et al 2010). In partic-
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Fig. 6 An example of the tendon-to-concrete filter function, for an in-
put density ρ̃ = 0.8 and influence distance of β f il = 4. In the vicinity of
the tendon segment (−4≤ di j ≤ 4), the density of concrete is gradually
increased to 1.0.

ular, we apply the robust topology optimization approach
where eroded and dilated layouts are added to a worst-case
formulation (Wang et al 2011). This guarantees control over
minimum length scale and for problems involving only stiff-
ness and volume one can simply use the eroded design for
quantifying the worst case for stiffness whereas the dilated
design quantifies the worst case for volume (Lazarov et al
2016). Therefore, the densities after tendon-to-concrete fil-
tering are further projected to obtain the eroded and dilated
densities respectively,

ρ
ero
i =

tanh(βHSηero)+ tanh(βHS(ρ̂i−ηero))

tanh(βHSηero)+ tanh(βHS(1−ηero))
(18)

ρ
dil
i =

tanh(βHSηdil)+ tanh(βHS(ρ̂i−ηdil))

tanh(βHSηdil)+ tanh(βHS(1−ηdil))
(19)

where βHS governs the curvature of the smooth projection;
ηero is the projection threshold for the eroded layout (e.g.
ηero = 0.6); and ηdil is the projection threshold for the di-
lated layout (e.g. ηdil = 0.4). We note that the response of
the actual (or intermediate, with ρ

int ) design intended for
manufacturing need not be evaluated during the optimiza-
tion. It is computed only for adapting the volume constraint
and for applying self-weight, according to the same projec-
tion function but with η = 0.5. A graphical demonstration
of the erosion and dilation projection functions is presented
in Figure 7.

For evaluating the structural response by Eq. (14), Young’s
modulus of each concrete element in the eroded layout is de-
termined by the Modified SIMP interpolation rule (Sigmund
and Torquato 1997),

E(ρero) = Emin +(Emax−Emin)(ρ
ero)pE (20)

where Emin is a relatively small positive number in order to
avoid singularity of the stiffness matrix; Emax is the actual
value of Young’s modulus for concrete; and pE is a penal-
ization factor that drives the design towards a 0-1 distribu-
tion.

Fig. 7 A graphical illustration of the smooth projection functions, used
in order to achieve minimum length scale and crisp void-solid layouts.

5 Sensitivity analysis

In this section we provide some details regarding the sensi-
tivity analysis procedure. As inferred from the design parametriza-
tion, both the objective and the volume constraint involve a
coupling between topological density variables that govern
the distribution of concrete and shape variables that gov-
ern the position of the tendon. This is due to the tendon-
to-concrete filtering that generates a dependence of the con-
crete distribution on the tendon position. For general deriva-
tions in this section, design variable are grouped in the vec-
tor x. Towards the end of the section, specific derivatives
with respect to the variables [ρ,y] are presented.

For differentiating the objective functional, we follow
the adjoint method. First, an augmented objective functional
is defined as

φ̂(x) = (fT
extutotal)

2 +λ
T (Keroutotal− fext − fpre− fsw) (21)

where λ is the adjoint vector. The partial derivative with re-
spect to a certain variable xi is given by

∂ φ̂

∂xi
= 2fT

extutotalfT
ext

∂utotal

∂xi
+λ

T
(

∂Kero

∂xi
utotal

+Kero
∂utotal

∂xi
−

∂ fpre

∂xi
− ∂ fsw

∂xi

)
. (22)

In order to eliminate the parts that involve implicit deriva-
tives of the displacements, namely ∂utotal

∂xi
, the following ad-

joint equation is to be solved,

KT
eroλ =−2fextuT

totalfext . (23)
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Once the adjoint vector is computed, it can be substituted
back to Eq. (22), giving an expression that contains only ex-
plicit derivatives,

∂ φ̂

∂xi
= λ

T ∂Kero

∂xi
utotal−λ

T ∂ fpre

∂xi
−λ

T ∂ fsw

∂xi
. (24)

The explicit derivatives appearing in Eq. (24) are com-
puted by chain rules. For a certain topological variable ρi,
the derivative of the stiffness is given by

∂Kero

∂ρi
= ∑

e∈Ni

∂Kero

∂ρ
ero
e

∂ρ
ero
e

∂ ρ̂e

∂ ρ̂e

∂ ρ̃e

∂ ρ̃e

∂ρi
(25)

where the components can be evaluated explicitly as fol-
lows:

◦ ∂Kero
∂ρ

ero
e

is related to the interpolation rule (20) for the stiff-
ness;

◦ ∂ρ
ero
e

∂ ρ̂e
is related to the smooth Heaviside projection (18);

◦ ∂ ρ̂e
∂ ρ̃e

is related to the tendon-to-concrete filter (17);

◦ ∂ ρ̃e
∂ρi

is the derivative of the density filter (15);
◦ ∑

e∈Ni

is the collection of derivatives within the neighbor-

hood of the i-th element in the density filter function.

For a certain shape variable yi, the derivative of the stiffness
is given by another chain rule,

∂Kero

∂yi
= ∑

e∈Ni

∂Kero

∂ρ
ero
e

∂ρ
ero
e

∂ ρ̂e

∂ ρ̂e

∂yi
(26)

where the first two components are as defined above. The
third component is the collection of derivatives of Eq. (17),
related to elements e that are influenced by the i-th tendon
coordinate, i.e. in the neighborhoods of its adjacent tendon
segment or segments. Essentially, this derivative is defined
by the distance de j between the element e and the segment
j, see also Figure 5.

As for the derivatives of the force vectors, the prestress-
ing forces ∂ fpre

∂xi
have zero derivative w.r.t. topological vari-

ables whereas w.r.t. shape variables it is a straightforward
derivative based on the geometric relations in Section 2. In
case self-weight loads are applied, their force vector has
derivatives w.r.t. both topological as well as shape variables.
These derivatives will take a form similar to Eqs. (25) and
(26), just that the first component will be related to the de-
pendency of the force on the physical material distribution.
For example, if the intermediate layout is used for comput-
ing gravity loads, then we have

∂ fsw

∂ρi
= ∑

e∈Ni

∂ fsw

∂ρ
int
e

∂ρ
int
e

∂ ρ̂e

∂ ρ̂e

∂ ρ̃e

∂ ρ̃e

∂ρi
(27)

∂ fsw

∂yi
= ∑

e∈Ni

∂ fsw

∂ρ
int
e

∂ρ
int
e

∂ ρ̂e

∂ ρ̂e

∂yi
(28)

where the first component can be evaluated straightforwardly
on an element-by-element basis.

As for the volume constraint, following (13) it can be
seen that the volume depends directly on the dilated densi-
ties. Accordingly, its derivatives will take the form

∂g
∂ρi

= ∑
e∈Ni

∂g
∂ρ

dil
e

∂ρ
dil
e

∂ ρ̂e

∂ ρ̂e

∂ ρ̃e

∂ ρ̃e

∂ρi
(29)

∂g
∂yi

= ∑
e∈Ni

∂g
∂ρ

dil
e

∂ρ
dil
e

∂ ρ̂e

∂ ρ̂e

∂yi
(30)

where the first terms are straightforward and the following
terms arise from Eqs. (19), (17) and (15).

6 Examples

In this section we present several demonstrative examples
that expose the capability of the suggested formulation to
achieve simultaneous optimization of the tendon shape and
the concrete topology. For optimization in the nested ap-
proach, we use the Method of Moving Asymptotes (MMA,
Svanberg (1987)). Because the evolution of shape and topol-
ogy are strongly coupled, we apply relatively conservative
external move limits of 0.2 and 0.05 on shape and topology
variables, respectively.

Throughout all examples we use a continuation scheme
on the parameters that control the sharpness of the SIMP
penalty, the smooth Heaviside projections and the tendon-
to-concrete filtering. The penalty pE in the SIMP interpola-
tion function begins at 1.0 and is increased by 0.5 every 25
design cycles, up to a maximum value of 3.0. The parameter
βHS begins at 1.0 and is increased by 1.0 every 25 design
cycles, up to a maximum value of 8.0. The parameter µpre
in Eq. (17) begins at 1.0 and is increased by 1.0 every 25 de-
sign cycles, up to a maximum value of 4.0. In all examples,
the number of design iterations is fixed to 200 – allowing
for the continuation scheme to facilitate stable convergence.
The parameter β f il is constant and is equal to rmin, so that
length scale in the vicinity of the tendon is consistent with
the overall design. The allowable volume of the dilated de-
sign V ?

dil is continuously adapted such that the volume of the
intermediate design will eventually meet its allowable vol-
ume fraction. The Heaviside projection functions are com-
puted with ηdil = 0.4 and ηero = 0.6.

In all examples, the material properties are set to Emax =

30,000, Emin = 0.3 and ν = 0.2. An initial assessment of
a suitable prestressing force is based on formulas for stan-
dard beams with uniform cross section. For example, for a
simply-supported beam with rectangular cross-section, the
requirement that in mid-span there will be zero tensile stresses
at the bottom chord leads to

TST D =
Mtotal

e+ h
6

(31)
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where TST D stands for the prestressing force of a standard
beam; Mtotal is the total bending moment due to external
forces and self-weight; e is the eccentricity of the tendon
w.r.t. the cross-section’s neutral axis; and h is the total height
of the section. Clearly, this formula does not account for
topological changes but can provide an estimate for the re-
quired prestressing force – because it will cancel the bend-
ing moments in a non-optimized uniform beam. As a de-
fault in all examples, the shape of the prestressing tendon is
parametrized by its Y -coordinate every 10 elements in the
X-direction. The Y -coordinates of the tendon cannot pene-
trate into a clear cover region of 2 elements in the top and
bottom of the design domain.

6.1 Example 1: Simply-supported beam under uniform load

In the first example we demonstrate the design of a single-
span simply supported beam subjected to a uniform load.
The setup of the problem is presented in Figure 8. Note that
sliding supports are available through the whole height of
the beam, so to enable the optimization to choose the best
location of the support that will coincide with the tendon’s
anchor. Providing a single support at the bottom of the beam
will require a somewhat artificial vertical connection be-
tween the support and the anchoring point. The beam has
a length-to-height ratio of 10:1 and it is modeled using a
structured grid of 300× 30 square finite elements with side
length of unity. In practice, only half of the domain is opti-
mized due to symmetry. The magnitude of the uniform ex-
ternal load is q = 1.0, acting in the -Y direction. For bearing
the uniform load, the top 4 layers of elements are fixed to
be solid material. The filter radius rmin is set to 3.0 and the
allowable volume fraction is 50%.

Fig. 8 Setup for the optimization of a single-span simply supported
beam subjected to a uniform load. Only the right symmetric half is
presented. The black region is fixed solid, the gray region is designable
concrete and the blue line is the tendon configuration.

The optimization is executed with five different values
of the prestressing force, spanning the range from Tpre =

0.6×TST D to Tpre = 1.4×TST D. Results from the optimiza-
tion are summarized in Table 1 and snapshots from selected

design cycles are displayed in Figure 9. The effect of the pre-
stressing force is evident: for lower values, the minimization
is driven mainly by the compliance of the external forces
while the prestressing force is not large enough in order to
completely balance the deformation. In contrast, for higher
prestressing forces the attained objective value approaches
zero and the two deformations are practically balanced. It
can be seen that the optimization no longer seeks “the stiffest
design” – the results with Tpre = 1.2×TST D and Tpre = 1.4×
TST D are more compliant w.r.t. the external loads. Further-
more, non-uniqueness of the solution arises because there
can exist multiple layouts that exhibit a balance of defor-
mations. As the topological layout is not driven to be the
stiffest anymore, also convergence to void-solid is not guar-
anteed because the underlying principle of SIMP and the
projection functions is not applicable. In conclusion, results
indicate that the estimate Tpre = 1.0×TST D works quite well
for this problem and leads to a stiff layout whose deforma-
tion due to prestressing nearly cancels out the deformation
due to the uniform load. Clearly, one can consider the pre-
stressing force as an additional design variable however this
aspect is out of the scope of the current contribution.

Fig. 9 Snapshots of the optimization process with Tpre = 0.8× TST D
after 25, 50, 75, 100 and 125 design cycles.

Principal stress plots for the optimized design with Tpre =

0.8×TST D are presented in Figure 10. When only the uni-
form load is applied, high tensile stresses appear in the bot-
tom chord of the beam. The prestressing itself introduces
high compressive stresses at the bottom chord, whereas the
upper part of the layout is acting in shear and bending –
resulting from the concentrated forces that are transferred
from the tendon to the diagonal struts. Summing up both ac-
tions, the compressive stresses at the bottom chord are small
and the whole structure is essentially in a compressive state,
excpet for a few local stress concentrations at the connec-
tions between the tendon and the plain concrete. Therefore
the desirable effect of prestressing is achieved.
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Table 1 Optimization of a simply-supported beam with uniform load and various values of the prestressing force.

Case optimized layout

Tpre = 0.6×TST D

φ 8.1490e+03
fT
ext uext 204.6562

fT
ext upre −114.3846

Tpre = 0.8×TST D

φ 2.9178e+03
fT
ext uext 211.6173

fT
ext upre −157.6005

Tpre = 1.0×TST D

φ 2.0800e+02
fT
ext uext 213.1219

fT
ext upre −198.6995

Tpre = 1.2×TST D

φ 4.9464e-05
fT
ext uext 222.6423

fT
ext upre −222.6353

Tpre = 1.4×TST D

φ 1.0854e-04
fT
ext uext 251.9399

fT
ext upre −251.9295

Fig. 10 Principal stress plots of the simply-supported beam optimized
with Tpre = 0.8× TST D. Red represents compression, blue represents
tension. Without prestressing, high tensile stresses appear in the bottom
chord. With prestressing, the whole beam is in a compressive state,
except for local bi-axial stress concentrations.

6.2 Example 2: Simply-supported beam under concentrated
load

The second example shows the optimized design of a single-
span simply supported beam subjected to a concentrated load.
The setup of the problem is presented in Figure 11. All pa-
rameters are the same as in the previous case, except for the
external loading that is replaced by a point load with a mag-
nitude of Q = 10, acting in the -Y direction. Fixed solids in
the top layers are therefore not necessary. The optimization
was performed with various values of the prestressing force
between 0.5×TST D and 1.5×TST D.

Three of the optimized designs obtained for the beam
are displayed in Figure 12. It is interesting to see how the
designs that have a lower available prestressing force, cre-
ate an internal MBB-like structure which is known to be
very stiff for concentrated forces. The internal MBB-like

Fig. 11 Setup for the optimization of a single-span simply supported
beam subjected to a concentrated load. Only the right symmetric half
is presented. The gray region is designable concrete and the blue line
is the tendon configuration.

layout is then connected to the supports by diagonal ten-
dons. Similar to the previous results, the layouts generated
with smaller prestressing forces are stiffer w.r.t. the point
load, but their overall objective is higher. Another interesting
aspect is the adaptation of the topological layout to high pre-
stressing forces. The design generated for Tpre = 1.5×TST D
contains X-like braces that connect the prestressing tendon
to the top chord. As can be seen in the stress plots in Fig-
ure 10, the response in these regions is dominated by shear.
Consequently, when the shear stresses are high due to high
prestressing forces, the X-bracing is chosen because of its
superior resistance to shear.

6.3 Example 3: Two-span continuous beam under uniform
load

In this example we show the design of a statically indetermi-
nate structure, namely a two-span beam subjected to a uni-
form load. The setup of the problem is presented in Figure
13. The beam is modeled using a structured grid of 800×40
square finite elements with side length of unity. In practice,
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Fig. 12 Optimized designs with a point load, obtained with various
values of Tpre. From top: 0.5× TST D, φ = 4.1508; 1.0× TST D, φ =
1.9516; 1.5×TST D, φ = 0.9436.

only half of the domain is optimized due to symmetry. The
magnitude of the uniform external load is q = 1.0, acting
in the -Y direction. For admitting the uniform load, the top
4 layers of elements are fixed to be solid material. The fil-
ter radius rmin is set to 4.0 so that the same physical length
scale is imposed as in the previous examples, and the allow-
able volume fraction is 50%. The prestressing force is deter-
mined based on the assumption (31), multiplied by 0.8. This
reduction is due to the fact that the maximum bending mo-
ments that appears above the central support are in practice
reduced because of the local influence of the support width.

The evolution of the optimized design obtained for the
two-span beam is displayed in Figure 14. The compliance
is fT

extuext = 355.2403, the product of external forces over
prestressing displacements is fT

extupre = −354.9260, giving
a final objective value of φ = 0.0988. As the results indi-
cate, the deformation due to external loads is nearly canceled
out by the deformation due to prestressing. Furthermore, it
can be seen that the shape of the tendon and the continuum
topology adapt to each other symbiotically, both for tensile
stresses within the beam spans (causing tension in the bot-
tom chord) as well as for tensile stresses above the central
support (causing tension in the top chord).

In the following we examine a similar beam as in the pre-
vious case, with the addition of gravity loads. The purpose
is to see how the topological layout and the tendon shape
adapt according to a design-dependent loading, in particular
when its magnitude is significantly larger than that of the the
fixed external loads. The majority of parameters remain the
same as in the previous case. One exception is the beam do-
main which is modeled using a structured grid of 480× 30
square finite elements with side length of unity. The filter
radius rmin is reduced accordingly to 3.0. Again, symmetry
is applied so only half of the domain is simulated and opti-
mized.

The optimized beam with only a uniform load of q = 1.0
serves as a reference solution and is presented in the top of
Figure 15. As can be observed, it strongly resembles the so-
lution above that had slightly longer span and finer mesh
resolution. Next, self-weight is applied in addition to the
uniform load. In order to create a design scenario in which

gravity is the dominant load in comparison to live loads, the
magnitude of the self-weight load is scaled so that each node
will receive a contribution of 4.0×ρ

int from each adjacent
element. This leads to a total gravity load which is roughly
two orders of magnitude larger than the uniform load. Ac-
cordingly, the prestressing force is computed as before based
on the bending moments due to the uniform load, and then
multiplied by 50. The optimized design for these parameters
is presented in the bottom of Figure 15. The objective func-
tional reached a value of φ = 1.545e−03, indicating that the
prestressing forces nearly cancel the deformation due to ex-
ternal and self-weight loads. More specifically, the objective
is composed of fT

extuext = 77.0197, fT
extusw = 3.4122e+ 03

and fT
extupre =−3.4892e+03. Therefore, the approach sug-

gested herein succeeds in finding optimized designs also for
cases that are dominated by gravity while the external load
is almost negligible. Comparing the optimized layout to the
one without self-weight, it can be observed that more mate-
rial is positioned near the central support so that deformation
due to self-weight is reduced.

7 Conclusions

A new methodology and computational procedure for op-
timizing prestressed concrete structures was presented. The
problem formulation combines both shape optimization of
the prestressing tendon and topology optimization of the
concrete layout. The tendon is treated as a collection of equiv-
alent loads that act internally on the beam as a result of
the tendon’s curvature. A special filtering technique is in-
troduced for constraining the tendon to be properly covered
by concrete, thus adding a coupling between shape and topo-
logical variables.

The applicability of the proposed method is demonstrated
on several test cases. The results presented in Section 6 in-
dicate that the optimization successfully reaches topological
layouts for which the deformation due to the applied loads
is balanced by the deformation due to prestressing. Further-
more, principal stress plots show that the desired effect of a
fully compressed structure is achieved. The influence of the
magnitude of the prestressing forces is also demonstrated
and investigated. For small prestressing forces, the design is
primarily stiffened against the external loads while the pre-
stressing only reduces the overall deformation. Once high
prestressing forces are applied, the design is more compli-
ant with respect to the external loads but the prestressing can
lead to practically zero total deformation.

The framework presented herein is rather general and
can open many possibilities for future extensions. These in-
clude the treatment of the prestressing force as a design vari-
able, and the investigation of other objective functionals for
quantifying the design intent of prestressed concrete mem-
bers. In principle, the formulation can be applied to three-
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dimensional problems. Nevertheless, the simultaneous opti-
mization of multiple tendons can raise come difficulties re-
garding intersections, overlapping and proximity of tendons
– hence this is by no means a straightforward extension.
More rigorous geometric representations may be helpful in
managing the parametrization and the various constraints.
On a wider scope, the coupled shape-topology framework
could be applied to other classes of problems in which it is
beneficial to embed discrete segments within the surround-
ing continuum.
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Fig. 13 Setup for the optimization of a double-span simply supported beam subjected to a uniform load. Only the right symmetric half is presented.

Fig. 14 The optimization evolution for a two-span beam, obtained with Tpre = 0.8× TST D. From top to bottom: after 25, 50, 75, 100 and 200
design cycles.

Fig. 15 The effect of self-weight on the optimization of a two-span beam. Top: without self-weight and Tpre = 0.8×TST D; Bottom: with dominant
self weight and Tpre = 50×TST D. When self-weight is dominant, material is more concentrated near the central support so that deformation due to
self-weight is reduced.
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