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1 Abstract

A unified approach that accounts for various buckling phenomena in truss design optimization is
presented. Euler buckling of slender members, global buckling and stability of sequences of bars
are all considered by optimizing the geometric nonlinear response instead of by imposing a large
number of constraints. In the proposed approach, each truss member is modeled as a sequence
of co-rotational beam elements with appropriate end-releases. By applying various imperfections,
buckling of single truss members, unstable configurations and global buckling can be taken into
account implicitly. A detailed discussion on key aspects of the proposed approach is presented,
showing how the choice of imperfections highlights certain buckling types and leads to respectively
stable designs. A comparison to other approaches and to results from the literature shows that the
proposed approach can ensure local and global stability without actually imposing any buckling
constraints. Finally, truss optimization for various levels of global deflections is presented, exposing
the potential of the formulation for optimizing highly nonlinear responses.

Keywords: Truss optimization, geometric nonlinearity, buckling constraints.

2 Introduction

Structural engineers and architects are showing increasing interest in utilizing optimal structural
forms due to their efficiency in transferring loads and their aesthetic shape. In the majority
of cases, continuum-based topology optimization procedures are implemented, see for example
Dombernowsky and Sondergaard (2009), Stromberg et al. (2012), Besserud et al. (2013) and Begh-
ini et al. (2013). While continuum topology optimization is well-established (Bendsoe and Sig-
mund, 2003; Sigmund and Maute, 2013; Deaton and Grandhi, 2014), its direct applicability for
contemporary construction practice is limited. In order to utilize structural forms generated by
continuum procedures, they have to go through complicated conversion processes. This leads to
complicated manufacturing of non-standard members and cross-sections that can be very expensive
to construct. Therefore, some studies suggested methods to convert continuum topology forms to
skeletal forms, for example (Mostafavi et al., 2013). Another approach will be to resort to the de-
velopment of optimization approaches based on truss and frame modeling, which are very common
in structural engineering. Then, the optimization procedures can yield designs that are directly
manufacturable by standard structural members.

Additional motivation to studying trusses and frames is the interest in coupling robotic manu-
facturing with topology optimization, for accurate construction of complex forms. Robots can
facilitate the construction of complicated forms that replace typical, repetitive forms. Then,
better stiffness-to-weight ratios can be achieved, see for example Søndergaard et al. (2013) and
Søndergaard et al. (2016).

In truss optimization, it is very common to use the ground structure approach, in which the
design domain is divided into a grid of hinges and connected with assumed possible bars (see
comprehensive review by Bendsoe and Sigmund, 2003, and references therein). The optimization
problem can be solved by the classical linear programming (LP) formulation of minimum volume
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or weight under stress constraints, or it can be reformulated also with displacements and then
solved by nonlinear programming (NLP) techniques.

The above mentioned classical formulations do not consider buckling, which encompasses vari-
ous phenomena: Euler buckling of slender members; global buckling of the complete structure; and
“chain” instability which is a particular artifact that results from the use of the ground structure
approach. Therefore, optimized trusses obtained from the use of the classical formulations based
on a ground structure may include compressed slender bars and unstable chains of bars, or may
be vulnerable to global buckling. Dealing with buckling at the post-processing stage may lead to
significant modifications of both the topology and the sizes of the optimized design. Therefore,
buckling should be taken into account in the formulation, leading to different topologies and sizes
compared to those obtained by standard truss optimization. The results of truss optimization that
accounts for buckling will then be valid conceptual designs that will not require modifications when
progressing to the detailed design stages. In this article, we focus exclusively on truss optimization
following the ground structure approach due to its generality. Both local and global buckling have
been considered in various studies using other parameterizations – for example in the context of
latticed dome structures (Saka, 2007, 2009; Çarbas and Saka, 2009; Çarbas and Saka, 2012) and
in the design of large-span three dimensional trusses (Pedersen, 2003).

Buckling in truss optimization is a classical topic and many studies have been carried out to
impose it via different formulations. Global buckling has been imposed by adding a constraint
on the positive semi-definiteness of the stiffness matrix (Ben-Tal et al., 2000; Kočvara, 2002)
using a formulation based on semi-definite programming (SDP). Two solution methods have been
suggested: one based on semi-definite approximations and the other on a quadratically constrained
quadratic subproblem (QQP). It is important to note that such methods are not commonly used
in structural optimization software and are still intended primarily for mathematical applications.
Other studies accounted for global buckling by adding a constraint on the minimum buckling
eigenvalue of trusses (Guo et al., 2005) and frames (Torii et al., 2015). In fact, Torii et al. (2015)
used a similar model as in the current work – geometric nonlinear frame elements – to derive the
geometric stiffness matrix and suggested that Euler buckling can be derived through buckling of a
sequence of frame elements in a single bar.

Euler buckling of truss bars has been imposed, in the majority of cases, by adding an Euler
buckling constraint on each bar (Rozvany, 1996; Zhou, 1996; Achtziger, 1999; Guo et al., 2001,
2005; Mela, 2014). This can increase significantly the number of constraint in the formulation,
hence introducing difficulties in the computational solution when the ground structure consists of
a large number of potential bars.

In classical formulations with stress constraints only, chain stability is not problematic because
hinges can be canceled from the optimized layout without corrupting its optimality. However, in
problems with Euler buckling constraints, hinge cancellation may lead to non-optimal solutions
due to the change in member buckling length (Zhou, 1996). Therefore, Rozvany (1996) suggested
to introduce geometrical imperfections to identify unstable chains, leading to the addition of a sup-
porting bar to the chain in order to prevent its buckling, see also (Jalalpour et al., 2011; Descamps
and Filomeno Coelho, 2014). Achtziger (1999) suggested a mathematical formulation that can
identify and replace each chain of bars with a unified bar using a penalty approach based con-
straints. These constraints check if intermediate hinges of chains are connected to negligible bars,
and according to their activity, the chain is replaced with unified bar. This formulation includes
a sequence of linear and nonlinear constraints which have been solved using Sequential Linear
Programming (SLP). (Mela, 2014) suggested a formulation based on mixed variable approach in
which the discrete variables represent the existence of bars. To ensure chain stability, several linear
constraints have been added to the formulation, that can identify chains if intermediate hinges of
the chain are not connected to other bars. In addition, he assumed overlapping bars in the ground
structure and added constraint to prevent the existence of overlapping bars in the optimized layout.
Other studies adopted the addition of overlapping bars to the ground structure, where unstable
chains were detected as global buckling using either SDP formulation (Kočvara, 2002) or EV for-
mulation (Guo et al., 2001). (Tyas et al., 2006) suggested a formulation to stabilize compressed
chains using a small perturbation loadings at hinges in different directions. These loads used to
identify unstable compressed chains who stabilized later by braces or replaced with overlapping
bars.

The aim of this work is to develop a truss optimization formulation that accounts for all buckling
considerations in a single optimization problem, without any formal buckling constraints. In the
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proposed approach, the truss members are modeled with geometric nonlinearity (GNL) using a
co-rotational beam formulation. In the GNL model, each truss member is modeled as a sequence
of co-rotational beam elements with moment releases only at hinged connections. By applying
appropriate imperfections, buckling of single truss members and unstable configurations can be
taken into account implicitly. The suggested procedure relies on geometric nonlinear analysis,
meaning that it is more demanding in the analysis phase in comparison with existing approaches
which are based on the linear-elastic response. Nevertheless, this added complexity is counter-
balanced by the reduced complexity of the optimization problem, which involves only one global
constraint. Therefore, the proposed approach can be very effective for problems with a large
number of design variables. These arguments and further considerations will be discussed and
presented in detail.

In the proposed procedure, the truss is optimized for end-compliance (Buhl et al., 2000), or
equivalently for end load-bearing capacity when single load case is applied. Other studies proposed
an eigenvalue based design sensitivity analysis for limit points or bifurcation points (Wu and Arora,
1988; Park and Choi, 1990; Kwon et al., 1999); and others proposed a continuum optimization pro-
cedure that optimizes for snap-through or bifurcation buckling loads (Lindgaard and Dahl, 2013).
Instead of using eigenvalue analysis, Noguchi and Hisada (1993) suggested to approximate the
eigenvectors by adding scaled displacements vectors as perturbations to the displacement vector.
To reduce the imperfection sensitivity of the structure, (Kegl et al., 2008) proposed a ‘worst-case’
shape imperfection of shells using shape optimization in which the eigenvectors and eigenvalues are
computed at each equilibrium point along the full nonlinear analysis. A similar procedure has been
proposed by (Lindgaard et al., 2010) to find a ‘worst-case’ shape imperfection of composite shell
structures when eigenvalue buckling is performed only at the load step before the limit point. This
approach has been used later by (Lindgaard and Lund, 2011) in buckling optimization of composite
structures using gradient-based algorithm. It is important to point out that in the current study,
imperfections are assumed according to the initial design, meaning that the sensitivity to various
imperfections is not accounted for explicitly. Another limitation is that gradients are derived only
by the final load bearing capacity and final deformations at the prescribed displacement, so for
statically indeterminate designs the compliance objective may not capture all internal buckling
occurrences – however this was not encountered in any of the test cases.

The remainder of the article is organized as follows: First, the GNL beam element is reviewed
briefly in Section 3, with particular emphasis on its utilization for capturing the buckling of truss
bars. The proposed optimization problem formulation and the sensitivity analysis are presented
in Section 4, followed by demonstrative examples based on graphical solutions and toy problems.
Thereafter, the capability of the proposed approach to account for various buckling phenomena is
demonstrated in Section 5 through benchmark examples from the literature. Finally, a summary
and conclusions are given in Section 6.

3 Nonlinear beam modeling

Considering buckling within the optimization of truss structures requires the incorporation of three
separate phenomena: Euler buckling of single members; global buckling of the whole structure;
and chain stability, which is a bi-product of topology optimization based on the ground structure
approach. In the proposed approach, the truss/frame members are modeled with geometric non-
linearity using a co-rotational beam formulation. Then each type of buckling can be captured, in
particular by using local imperfections of bars for inducing Euler buckling, and global imperfections
of nodes’ positions for inducing global buckling and chain instabilities. The main advantage of using
the co-rotational beam element is in capturing buckling in the structural response, and then driving
the design by optimization towards a buckling-resistant design. This approach replaces the need
to impose numerous buckling constraints in the optimization problem formulation.

3.1 Co-rotational beam modeling

Local and global buckling can be traced in the structural model through geometric nonlinear
analysis. In this study, a 2D co-rotational beam element is adopted (Wempner, 1969; Belytschko
and Hsieh, 1973; Belytschko and Glaum, 1979). Its formulation is briefly presented hereunder,
following the textbook representation by Crisfield (1991). Kinematic relations follow Kirchhoff’s
theory with large deformations, large rotations and small strains.

3



Figure 1: Co-rotational beam element

The internal loads vector f int is given by

fint =


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(1)

where c = cos(β) and s = sin(β); β and L are the rotation and the length of the bar in the final
configuration, see Fig. 1. The axial force and bending moments are given by NM1
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where L0 is the initial length of the bar; α is the rigid body rotation; θi and θli0 are the end-rotations
of the bar in the final and the initial configurations, respectively. The full tangent stiffness matrix
of a co-rotational beam element is given by

Kt = BTCB +
N

L
zzT +

(M1 +M2)

L2
(rzT + zrT ) (3)

with
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z = [s − c 0 − s c 0] (5)
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C =
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L0

0 2EI
L0

4EI
L0

 (7)

where, in small deformations, the first term in Eq. (3) is the elastic stiffness matrix and the
following terms form the geometric stiffness matrix.

Non-linear analysis is solved using a Newton-Raphson scheme under displacement control. The
analysis system of equations takes the form

R(u) = θf̂ext − fint(u) (8)
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where R(u) is the vector of residual forces, θ is the load factor multiplying the constant external

loads vector f̂ext and fint is the internal forces vector. In displacement-controlled analysis, equi-
librium is attained by choosing a prescribed displacement and solving for θ and n − 1 unknown
displacements, where n is the number of displacement degrees of freedom (DOF) in the model. As
a result, a non-symmetric stiffness matrix is obtained and special treatment is required to keep it
symmetric (Batoz and Dhatt, 1979), if this is desired due to computational considerations.

3.2 Capturing truss buckling with the GNL model

In this work, truss bars are modeled using at least two co-rotational beam elements with moment
releases at hinged connections. Elements that are connected to hinges are modeled as fixed-hinge
frame element while others are modeled as fixed-fixed elements. In order to avoid singularities at
rotation degrees of freedom at hinges, in each hinge a single bar is connected rigidly. In addition,
the geometric non-linear formulation is not sufficient for inducing buckling in the truss bars: it
should be complemented with the imposition of various imperfections. In this section, we will
demonstrate how the co-rotational model and the chosen imperfections are utilized for simulating
various buckling phenomena in trusses.

In topology optimization of trusses, three types of buckling must be considered and for this
purpose, various imperfection assumptions should be taken in the modeling stage. For example,
Euler buckling in bars can be captured by perturbing the straightness of bars, whereas chain
and global buckling can be captured if nodes are located with appropriate deviations from their
“perfect” position. In the following examples, we illustrate and investigate the effect of various
imperfections. In these test cases, it is assumed that all bars are made of solid circle cross-section
and the modulus of elasticity is 106.

A demonstrative example of accounting for Euler buckling of a truss bar is illustrated in Fig. 2.
The truss member consists of 20 co-rotational beam elements. The response of an imperfect bar is
compared to an ideal one, and as can be seen, using the co-rotational beam element without any
imperfection does not induce Euler buckling. On the other hand, taking a small imperfection of
0.1% is enough to prompt Euler buckling, yielding a force-displacement curve that clearly converges
to the first buckling eigenvalue of the bar. In truss members, the direction of eccentricity is
not important because the response is equivalent in both cases. However, the magnitude of the
eccentricity affects the equilibrium path such that very low eccentricity can lead to an acute,
highly nonlinear response that may hamper the convergence of Newton-Raphson iterations. In the
context of truss optimization, local imperfections have been used before by Pedersen (2003) with
an imperfection of 1%-2%, and by Pedersen and Nielsen (2003) who considered imperfections for
calculating reduced stress limits.

Figure 2: Euler buckling of a truss bar modeled by 20 co-rotational elements. With an eccentricity
of 0.1%, the nonlinear response converges towards the buckling eigenvalue.
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In this study, unstable chains are identified implicitly by the geometric nonlinear analysis,
because a sequence of unbraced truss members will exhibit global buckling. The modeling of chain
stability is investigated in the following example, which shows the important role of imperfections
for identifying such unstable chains. The truss structure shown in Fig. 3 consists of a chain of
two truss bars which are braced by another very thin bar at their hinged connection. In practice,
a sequence of two compressed bars connected by a hinge without bracing is not stable, but it
can be seen that it is computationally possible if the bars are perfectly aligned and connected
without eccentricity. In this case, the very small stiffness of the bracing bar is enough to overcome
singularity in the computational model, and the response of the two bars will be identical to the
response of a single bar. In order to induce instability of the chain of bars, a small perturbation in
the position of the hinge should be applied. This is enough to prompt buckling of the chain, which
cannot be resisted by the very thin bracing – thus laying the foundations for a computational model
that captures chain buckling directly via the response, alleviating the need for special constraints.

Figure 3: Demonstrative example of chain instability. The sequence of compressed bars exhibits
buckling once the position of the hinge is slightly perturbed by a global imperfection.

It is important to clarify that if a negative imperfection is assumed, then the behavior will be
different, i.e. the negligible bar will be tensioned and there will be no chain buckling. Clearly,
choosing the imperfection shape of nodes’ positions has a great effect on the total behavior of the
structure. In this paper, imperfection shapes are assumed based on engineering judgment and
future work will include a mechanism to define the appropriate shape of imperfection.

4 Optimization problem formulation

In this work we consider the classical problem of finding the stiffest structure with a given volume
(weight) and vice-versa, with buckling taken into account implicitly by the nonlinear structural
response. As buckling is accompanied with large deformations, we interpret “the stiffest structure”
as the most buckling-resistant structure. In the case of displacement-controlled analysis and when
the prescribed displacement is constant, the stiffest structure is obtained by maximizing the end-
compliance, or equivalently, by maximizing the load bearing capacity if a single point load is
applied. Therefore, the optimization problem takes the form
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min
x

f = −θ

s.t.: g =

N∑
i=1

Ai li ≤ V ∗,

0 ≤ xi ≤ 1 i = 1, ..., N

with: R(x,u, θ) = θf̂ext − fint(x,u) = 0 (MaxF)

where xi is the design variable corresponding to the i− truss bar; the bar cross section area
is Ai = Amin + (Amax − Amin)xi, with Amax and Amin representing the given maximum and
minimum cross-section areas; li is the bar length; V ∗ is the available volume; and N is the number
of potential bars. In this formulation, the procedure starts with a relatively flexible structure (that
satisfies the volume constraint) and converges towards the stiffest while maintaining the given
volume. Therefore in some cases, intermediate structures may exhibit a highly non-linear response
that will affect the procedure’s convergence. To overcome this issue, a reversed formulation of
minimum volume under a constraint on load bearing capacity constraint can be used:

min
x

f =

N∑
i=1

Ai li

s.t.: g = θ ≥ θ∗

0 ≤ xi ≤ 1 i = 1, ..., N

with: R(x,u, θ) = θf̂ext − fint(x,u) = 0 (MinV)

where θ∗ is the minimum load factor required. In this formulation, an initial conservative
solution is assumed (i.e. with high volume), and then the procedure aims to minimize the volume
while maintaining the required load bearing capacity. In both formulations the nested approach is
utilized, meaning that the displacements u and the load factor θ are calculated separately outside
the optimization problem. The design is then updated based on first-order gradients resulting from
an adjoint sensitivity analysis. In the proposed formulations, moment of inertia of the cross-section
can be expressed as function of the area using the relation I = αA2, where α relates to the shape
of the cross-section, e.g. for solid circle cross-section α = 1/4π and for solid cubic cross-section
α = 1/12.

4.1 Demonstrative example: graphical solution

In order to provide initial insight regarding the application of the proposed approach, we examine
a problem with two design variables that can be solved graphically. The solution can therefore be
compared to the solution of a very common truss optimization formulation in the literature, i.e.
minimum volume under Euler buckling constraints. The examined two-bar truss is made of solid
circle cross-sections and the modulus of elasticity is 106, see Fig. 4a. In the formulation of minimum
volume under Euler constraints, the truss is loaded by a point force of 50 at the top. By examining
different combinations of cross-section areas, the axial forces in each bar are calculated and the
buckling constraints are plotted in Fig. 4b. In a sizing optimization problem, the feasible region
must satisfy both constraints hence the optimal solution is attained at (A1, A2) = (0.0066, 0.0046)
with a minimum volume of V = 0.0103. If topology optimization is the goal, then the objective
can be further reduced by eliminating bars, leading to singular points in the feasible region. In this
example, such a singular optimum is attained at (A1, A2) = (0, 0.0076) with a minimum volume of
0.006545. It is important to clarify that arriving to singular optima by numerical search algorithms
might be difficult or even impossible (e.g. Kirsch, 1990).

For solving the formulation (MaxF) graphically, a prescribed displacement of up = 0.01 is
applied in the direction of the load and a local imperfection e/L = 0.001 is introduced to initiate
Euler buckling of the bars. Then the load factor is calculated and plotted in Fig. 4c through different
combinations of cross-section areas. Taking the optimal volume of 0.006545 as a constraint and
maximizing the load factor leads to the same solution (A1, A2) = (0, 0.0076) with an objective value
of θ = 50. Similarly, the graphical solution of formulation (MinV) is illustrated in Fig. 4d, where
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the required load factor is given as θ = 50. The minimum volume which satisfies the constraint
is attained also at the precise same solution as before. This example shows that the proposed
approach can, in some cases, mimic the straightforward formulation of minimum volume subject
to buckling constraints, without actually imposing buckling constraints. In addition, the issues of
singular optima and discontinuous feasible regions can be overcome, as can be seen in Fig. 4c,d.
It is important to point out that the two-bar example is relatively simple and the observations
may not be valid for more complicated structures, see Sec. 5 for a discussion on accounting for
buckling in benchmark examples. At the same time, we believe that the graphical solutions reveal
the potential of the proposed approach and encourage its investigation.

(a) Truss structure (b) Graphical solution using formulation of
minimum volume under Euler constraints

(c) Graphical solution using (MaxF)
formulation

(d) Graphical solution using (MinV)
formulation

Figure 4: Graphical solution of two bar truss

4.2 Sensitivity analysis

All numerical solutions of the optimization problems in this study were obtained with the Method
of Moving Asymptotes (MMA, (Svanberg, 1987)) a first-order gradient-based algorithm. In this
section, we derive the gradients of the objective and constraint in the two formulations, (MaxF)
and (MinV). Sensitivity analysis for problems that involve large deformations depends on the final
equilibrium only and disregards the solution path. For the formulation (MaxF) using displacement-
controlled analysis, the augmented objective is

f̂(θ,x,u) = f(θ,x,u)− λT [θf̂ext − fint(x,u)] (9)

Differentiation with respect to a certain design variable gives

∂f̂

∂xi
=

∂f

∂xi
+ (

∂f

∂u
+ λT

∂fint
∂u

)
∂u

∂xi
+ (

∂f

∂θ
− λT f̂ext)

∂θ

∂xi
+ λT

∂fint
∂xi

(10)

where, without loss of generality, we assumed that the external forces do not depend upon the
design.

The derivatives ∂f
∂xi

= 0, ∂f
∂u = 0 and ∂f

∂θ = −1 are found straightforwardly from the definition

of the objective, whereas ∂fint

∂x are explicit derivatives of the co-rotational model

8



∂f iint
∂xi

=



−E(Amax−Amin)(cL(L−L0)+12sαAi(θl1+θl2)
LL0

E(Amax−Amin)(−sL(L−L0)+12cαAi(θl1+θl2)
LL0

4αE(Amax−Amin)Ai(2θl1+θl2)
L0

E(Amax−Amin)(cL(L−L0)+12sαAi(θl1+θl2)
LL0

−E(Amax−Amin)(−sL(L−L0)+12cαAi(θl1+θl2)
LL0

4αE(Amax−Amin)Ai(θl1+2θl2)
L0


(11)

where Ai = Amin + (Amax −Amin)xi.
The definition of the tangent stiffness matrix corresponding to the final equilibrium point gives

∂fint

∂u = K. In contrast, ∂u
∂xi

and ∂θ
∂xi

cannot be calculated explicitly hence the following coupled
system of adjoint equations needs to be solved

∂f

∂u
+ λT

∂fint
∂u

= 0

∂f

∂θ
− λT f̂ext = 0 (12)

Inserting the known derivatives to the set of equations (12) and utilizing the subscripts p and f to
denote the prescribed and non-prescribed DOF, the set of equations can be represented as follows[

Kff Kfp

f̂fext f̂pext

](
λf
λp

)
=

(
0
−1

)
(13)

Finally, the solution for λ is inserted back into (10) to give the design sensitivities of the load-
bearing capacity

∂f̂

∂xi
= λT

∂fint
∂xi

(14)

The sensitivity of the volume constraint can be derived straightforwardly

∂g

∂xi
= (Amax −Amin)li (15)

For the problem of (MinV), the objective and constraint are simply interchanged so the same
sensitivity analysis can be utilized.

4.3 The effect of various imperfections

In this section, the influence of imposing various imperfections is investigated and examined on
the classical truss problem shown in Fig. 5. The purpose of this investigation is to examine
the capability of the formulation to capture the various buckling phenomena that occur in truss
optimization. The structure is loaded at the bottom right side of the design domain, and the
prescribed displacement is chosen in the same DOF. The ground structure is shown in Fig. 5b.
As it can be seen, it includes two overlapping bars that can replace a chain of two bars. Local
and global imperfections are sketched in Fig. 5c and Fig. 5d, respectively. The global imperfection
shape is chosen according to the curvature of the loaded edge of the cantilever beam. Similar
results were obtained by choosing the deformed shape of the truss, following a linear analysis, as
the global imperfection. The bars are made of solid circle cross-section and the optimization is
solved using MMA with the parameters given in Table 1.

Figure 5: (a) design domain; (b) ground structure; (c) local imperfections e/l = 0.01; (d) nodes
positions imperfection
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Table 1: Solution parameters for 11-bar truss example
Parameter Value
Amax 2 · 10−3

Amin 2 · 10−7

V ∗ 1 · 10−2

E 1 · 106

MMA move limit 1 · 10−2

Various optimized designs are generated by solving formulation (MaxF) with different combi-
nations of imperfections and prescribed displacement. In the following comparison, the effects of
local and global imperfections will be examined under two scales of deflections: small deflections
of up = 1 · 10−6 and large deflections of up = 1 · 10−2. Our comparison focuses on six particular
layouts obtained from different combinations of imperfections which are listed in Table 2, while
the optimized layouts are shown in Fig. 6. In these layouts, bars with cross-section area smaller
than 1 · 10−4 times the maximum cross-section area are assumed negligible and are not displayed.

Table 2: Effect of various imperfection on optimal design.

Layout
Imperfection assumed Response(layout 1 imp.) Response(layout 6 imp.)
local global up θ(up = 10−6) θ(up = 10−2) θ(up = 10−6) θ(up = 10−2)

1 without without 10−6 3.906 · 10−5 3.395 · 10−1 3.532 · 10−6 0.592 · 10−2

2 with without 10−6 3.846 · 10−5 0.161 · 10−1 8.257 · 10−11 1.434 · 10−8

3 without with 10−6 3.879 · 10−5 3.884 · 10−1 6.437 · 10−6 1.606 · 10−2

4 with with 10−6 3.753 · 10−5 3.757 · 10−1 9.498 · 10−6 8.992 · 10−2

5 with without 10−2 2.114 · 10−5 2.112 · 10−1 2.563 · 10−6 10.95 · 10−2

6 with with 10−2 2.101 · 10−5 2.099 · 10−1 2.531 · 10−6 10.95 · 10−2
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(a) Layout (1) (b) Layout (2) (c) Layout (3)

(d) Layout (4) (e) Layout (5) (f) Layout (6)

Figure 6: Different layouts of 11-bar truss.

Figure 7: Full response curves over the imperfections for which layout 1 is obtained: (a) small
deflections, up = 10−6; (b) large deflections, up = 10−2. Under infinitesimal deflections, layouts 1,
2, 3 and 4 are dominant over layouts 5 and 6, as expected. Once large deflections are prescribed,
layout 2 buckles due to the hinged chain.
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Figure 8: Full response curves over the imperfections for which layout 6 is obtained: (a) small
deflections, up = 10−6; (b) large deflections, up = 10−2. Under infinitesimal deflections, layout
4 is dominant whereas layout 2 collapses due to the unbraced hinge. Once large deflections are
prescribed, only layouts 5 and 6 maintain their structural integrity.

From layout 1 (Fig. 6a) it can be observed that applying no imperfections can lead to the
optimal design of the well-known plastic design problem of minimum volume subject to stress
constraints, where the bottom bar has the same cross-section area as the sum of cross-section areas
of overlapping bars. Assuming local imperfection (Fig. 6b) leads to practically the same layout but
without the overlapping bar that buckles locally – meaning that the procedure successfully detected
Euler buckling of a long and slender bar and removed it, while an unstable chain of two short bars
had been kept because no imperfections were applied to it. Assuming global imperfections only
leads to the opposite design choice where chain buckling was detected, as can be seen in the layout
of Fig. 6c. The sequence of the two short bars has been removed in the optimization procedure
and the long slender bar was kept maintained. When prescribing large deformations, two similar
layouts are obtained by assuming either local imperfections only or local and global imperfections,
see Fig. 6d,e. In this case, global imperfections do not affect the optimal design because they
are obtained implicitly by the large deformations of the truss. The layouts show clear preference
towards buckling-safe tensile forces, where the compressed bars are much shorter than in layouts
1-3.

For further insight regarding the influence of the various imperfections, we present load-
displacement curves of the five layouts, see Fig. 7 and Fig. 8. These curves are computed under
the imperfection assumptions of layouts 1 and 6 and in two ranges of prescribed deflections. With
no imperfections, layouts 1, 2, 3 and 4 exhibit almost identical responses under small deflections
(Fig. 7a), whereas under large deflections (7b), layouts 1, 3 and 4 are the stiffest and layout 2
buckled. Chain buckling of layout 2 resulted from the development of large displacements and
rotations of the truss. In both deflections scales, layouts 5 and 6 were stable but not the stiffest,
as expected. With local and global imperfections assumed and a large prescribed deflection, it can
be seen in Fig. 8b that the layouts 5 and 6 can sustain the highest loads, as expected because they
were designed with such imperfection. When examining the response under a very small prescribed
deflection (Fig. 8a), layout 2 is unstable due to the unbraced chain and the stiffest solution is lay-
out 4. Once the prescribed displacement is increased then layouts 1, 3 and 4 buckle, and when up
exceeds 2.5 · 10−3 only layouts 5 and 6 maintain their structural integrity.
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(a) Layout (3∗) (b) Layout (4∗) (c) Layout (6∗)

Figure 9: Layouts 3, 4 and 6 over inverted global imperfection (-0.05)

In order to investigate the effect of the direction of imperfections, a series of numerical studies
were performed on the same example as in Fig. 5 over inverted directions of local and global
imperfections. The results were then compared to results listed in Table 2 and to the layouts in
Fig. 6. Assuming an inverted direction of local imperfection does not affect the results, as expected.
This is also discussed in Section 3.2. However, inverting the direction of global imperfections may
lead to remarkable differences in the optimized design. This is demonstrated in Fig. 9 where layouts
3∗ and 4∗ are different than their counterparts, layouts 3 and 4 in Fig. 6. As it can be seen, the
bottom bar in layout 3 was replaced in layout 3∗ with a braced chain and the compressed bracing
bar in layout 4 was replaced with a tensioned diagonal bracing bar in layout 4∗. Practically, global
imperfections can result from the structural deformations or from construction deviations whose
directions are difficult to predict. Therefore in order to achieve robust optimized design, global
imperfection directions must be assumed in the most critical pattern. Comparing results over the
different directions of the global imperfections shows that layouts 3 and 4 are more robust than 3∗

and 4∗ due to the tensioned bracing that may buckle when the imperfection is inverted. From the
other hand, layout 3 is not affected and the bracing bar in layout 4 will be in tension instead of in
compression. This can shed light on the importance of choosing the shape of global imperfection,
which must be assumed to give the most robust design. Global imperfection shape in layouts 3 and
4 is upwards and it resembles the curvature shape of an edge loaded cantilever beam that coincides
with the approach proposed by Noguchi and Hisada (1993) where imperfection is applied based on
the displacements of the structure. In the current study, magnitudes of imperfections were chosen
to be large enough such that all buckling phenomena are exposed. A more general approach will
be investigated thoroughly in future work.

In conclusion, based on the demonstrative example above, the influence of various imperfection
assumptions in truss optimization is evident. Local imperfections are necessary for capturing the
slenderness and buckling of single members, while global imperfections are essential to ensure the
global stability of the structure including the chains. Finally, the magnitude of the prescribed
displacement affects the range of deformation for which the optimized design is indeed dominant
over other designs. The magnitudes of imperfections and the shape of the imperfection in terms
of nodes’ positions, affect the robustness of the optimized design and should be chosen according
to the specific case and design target, e.g. according to deformation shape or curvature of the
structure. In principle, the suggested approach is general and can capture all buckling phenomena
that can occur in truss optimization based on ground structures. Nevertheless, in the examples
presented in Section 5, the imperfections were set according to the nature of the ground structure
and to the specific buckling phenomenon which was investigated in the literature.

4.4 Aggregated stress constraints

In some cases, for generating viable optimized trusses and for the sake of a fair comparison to
the literature, it is necessary to enrich the formulations (MaxF) and (MinV) with additional
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considerations. In particular, stress constraints will be briefly reviewed in this section, and later
utilized in some of the examples. In principle, in order to account for stresses in the truss bars,
a stress constraint on each bar should be added to the formulation. In the current work, for
reducing the number of constraints, all stress constraints are aggregated into a single global stress
constraint that is formulated using the widely used p-norm function that takes the form (e.g.
Haftka and Gürdal, 2012):

g(θ,u,x) =

∥∥∥∥ σ

σy

∥∥∥∥
p

− 1 ≤ 0 (16)

where σ is the vector of normal stresses in the bars, measured in their neutral axes; σy is the
allowable given stress; and p is the p-norm factor. Eq. (16) can be presented explicitly as

g(θ,u,x) = p

√√√√ Nb∑
i=1

(
σi
σy

)p
− 1 ≤ 0 (17)

where Nb is the number of bars and σi is the normal stress in the i-th bar. Because in the current
work truss bars are divided into two or more co-rotational elements, similar stresses are computed
in adjacent finite elements and this may introduce difficulties in using a global stress constraint.
To overcome these difficulties, Eq. (17) can be expressed as

g(θ,u,x) = p

√√√√ Nb∑
i=1

Ne∑
j=1

(
jσi
σy

)p
− 1 ≤ 0 (18)

where for relatively small p factor, computing with similar stresses in the same bar may overesti-
mate the actual maximum stress. Hence in order to measure the exact stress in the bar, the sum
of the stresses in the same bar is divided by Ne, the number of elements composing the bar, giving

g(θ,u,x) = p

√√√√ 1

Ne

Nb∑
i=1

Ne∑
j=1

(
jσi
σy

)p
− 1 ≤ 0 (19)

The gradient of the stress constraint is derived using adjoint method, in a similar manner as
for the load-carrying functional. Derivatives with respect to the design variables are

∂g

∂xi
= λT

∂fint
∂xi

. (20)

The adjoint vector λ is the solution of the following set of equations:[
Kff Kfp

f̂fext f̂pext

](
λf
λp

)
=

(
−BT ∂g

∂σE
0

)
(21)

where B = ∂ε
∂u and ∂g

∂σ can be evaluated explicitly based on the co-rotational model and on Eq. (19).
In the p-norm formulation, the accuracy of the approximation of the maximum stress in the bars
depends on the p factor, where an infinite value leads to the exact maximum stress. On the
other hand, increasing p introduces high nonlinearities and may cause difficulties in computing the
gradients, hence a good balance between the accuracy and stability of the optimization should be
obtained.

5 Examples

In this section, we demonstrate the capabilities of the proposed approach to account for various
buckling phenomena occuring in truss optimization. First, we examine the procedure by direct
comparison to two well-known results from the literature, namely global buckling of a compressed
2D tower by Ben-Tal et al. (2000) and Euler buckling and chain stability of a cantilever by Achtziger
(1999). Finally, an additional example is presented that demonstrates the versatility of the ap-
proach in optimizing for various ranges of deformation. When comparing to results from the
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literature, it is in some cases difficult to provide a direct quantitative comparison using the limited
data supplied in literature, hence only qualitative comparison has been pursued.

In all examples, we assume that all bars are made of solid circle cross-sections, and that the
modulus of elasticity is 106.

Stopping criterion in the following examples is established according to the last design variable
update, when the error of the i−th iteration εi gets below a required error ε in such

εi =
max(|xi − xi−1|)

max(|xi|)
(22)

5.1 Global buckling

In this example, the proposed formulation is applied on a case that involves global buckling.
Therefore, only global imperfections have been applied and no overlapping bars were modeled in
the ground structure. Comparison to results from the literature centers on the example of Ben-Tal’s
compressed tower (Ben-Tal et al., 2000) and the aim is to mimic the results from the reference using
the current approach. The geometry, ground structure, applied load and prescribed deformation
are shown in Fig. 10a. The global imperfection is derived from the bending deformation of the
initial truss under a concentrated load, also matching the first buckling mode, see Fig. 10b. The
prescribed displacement is up = 0.01 and is chosen to be in direction of the first buckling mode
which is, in this example, perpendicular to the direction of the applied load.

The total number of potential bars is 43 and each bar is divided into two co-rotational beam
elements, giving 186 analysis DOF. The aim is to achieve identical buckling resistance in both
directions of the tower, hence it is assumed that the columns and struts are symmetric. Conse-
quently, the number of design variables for optimization is 24. The solution was achieved using
formulation (MaxF) with a given volume of V ∗ = 0.01. The optimization problem is solved using
MMA with the parameters: Amax = 1.0 · 10−3; Amin = 1.0 · 10−5; an external move limit of 0.1;
and required error ε = 1.0 · 10−4.

(a) Ground structure

(b) Deformation shape of initial ground structure

(c) Optimized layout - proposed formulation

Figure 10: Truss optimization accounting for global buckling – design of a compressed tower
following Ben-Tal et al. (2000).

The initial truss has uniform cross-sections of 2.04 · 10−4, chosen so to satisfy the volume
constraint. The initial load-bearing capacity is 0.323. Within 22 design iterations, optimization
leads to the optimized design with a load-bearing capacity of 0.9705. The optimized layout is
shown in Fig. 10c, and it clearly resembles the result from the literature, which was achieved by
semi-definite programming. The optimized design has tapered columns that have bigger cross-
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section areas close to the supports, while the internal struts are flexible near the supports and
stiffer near the loaded edge.

Full response curves of intermediate designs are shown in Fig. 11. It can be seen that the
initial response is nonlinear, and during optimization the response approaches a linear curve and
simultaneously the load bearing increases. Qualitatively, a comparison between results of the
proposed procedure and the literature (in particular, see (Ben-Tal et al., 2000) Figure 4d) shows
that similar layouts have been obtained in both formulations. This indicates that the proposed
formulation is capable of imposing constraints on global buckling in truss optimization, without
an actual constraint in the form of an eigenvalue or positive semi-definiteness requirement.

Figure 11: Truss optimization accounting for global buckling – full response curves of designs
corresponding to selected optimization iterations. The initial response is nonlinear, and during
optimization the response approaches a linear curve while the load bearing increases.

5.2 Euler buckling and chain stability

In this example, we show how local stability can be accounted for in truss topology optimization.
As a basis for investigation, the bending truss structure by Achtziger (1999) is chosen. In the
referenced article, the author proposes a sequential approach that can capture both Euler buckling
of slender members and chain stability. In order to capture chain instability and overcome it in
the optimization, overlapping bars are added to the ground structure and global imperfections
are applied. The imperfections consist of an upwards vertical camber of 0.2 which is applied on
the whole ground structure, while joints in the middle row are perturbed horizontally by a 0.025
imperfection.

The geometry of the ground structure, the applied load and the prescribed deformation are
shown in Fig. 12a. The total number of design variables, each representing a potential bar, is
172 and each bar is divided into two co-rotational beam elements, giving 615 analysis DOF. In
this case we implement formulation (MinV) that minimizes volume with a required load bearing
capacity of θ∗ = 1. In addition, we impose a global p-norm stress constraint in order to obtain
a fair comparison to the results in the reference which included stress constraints. The allowable
stress limit is σy = 1000 and the p-norm factor is p = 50. The optimization problem is solved
using MMA, with the parameters Amax = 0.01 and Amin = 1.0 · 10−6, which represent a more
“topological” design intent compared to the previous example. As the ground structure consists
of many potential chains which can be braced and stabilized with very thin bars, it was difficult to
obtain a clear solution using a constant move limit on the design variables. A constant move limit
of 0.01 was found to be too coarse for such braces that can alternately enter and exit the design
solution and cause acute differences in the nonlinear response. Therefore, an adaptive technique
is used in which the move limit is computed as a percentage of the last design variable update by
MMA. In this way, modifications of both small and large cross-sections are bounded relatively to
their current cross section and not by an absolute value. In this example, a move limit of 10%
is used. This technique assists in stabilizing the convergence of the optimization process and in
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avoiding acute nonlinear responses. The disadvantage is the need to perform a large number of
design iterations in order to completely remove bars from the design.

(a) Ground structure

(b) Optimized design by the proposed formulation

Figure 12: Truss topology optimization accounting for Euler buckling and chains – design of a
cantilever following Achtziger (1999).

A conservative initial truss is assumed with uniform cross-section areas of 0.0045 and a total
volume of 1.385. This truss has load-bearing capacity of 8.483 and the aggregated maximum stress
is 5422. For stopping criterion the required error of ε = 1.0 · 10−5 was chosen, and bars with cross-
section area less than 0.15% of the maximum bar are assumed negligible and not shown in the
optimized layout. The optimized design with a volume 0.09 is attained in 6576 design iterations.
A clear topological solution is attained in less than 2000 design iterations, and further iterations
are needed in order to remove both overlapping bars and bars with negligible cross-section. The
optimized design is shown in Fig. 12b and intermediate layouts found after 100, 1000, 2000, 4000
design iterations are shown in Fig. 13.

(a) Layout in iteration no. 100, V=0.1907 (b) Layout in iteration no. 1000, V=0.0996

(c) Layout in iteration no. 2000, V=0.0939 (d) Layout in iteration no. 4000, V=0.0911

Figure 13: Truss topology optimization accounting for Euler buckling and chains – intermediate
designs.

Examining the result, it can be seen that overlapping tensioned bars still exist in optimized
design, but compressed ones do not. Cross-section areas of compressed bars close to the support
are chosen according to the stress constraint, therefore the procedure preferred slender overlapping
bars over braced chains. In contrast, near the loaded edge, overlapping compressed bars are too
slender and sensitive to buckling, therefore a braced chain was preferred. It can be seen that the
optimized design obtained with the proposed procedure is different from that presented in the
literature with the same ground structure. In fact, it will be shown that the current result is
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presumably a better optimum.
In order to perform a direct comparison to the literature, the same problem is solved again but

with a coarse ground structure. The geometry of the coarse ground structure, the applied load and
the prescribed deformation are shown in Fig. 14a. The total number of potential bars is 34 and
each bar is divided to two co-rotational beam elements, giving 138 analysis DOF. The optimized
design reaches a volume of 0.1077 and is attained after 1232 design iterations. It is displayed in
Fig. 14b and it clearly resembles the layout obtained in the literature (see (Achtziger, 1999) Fig. 1c)
where negligible bars with cross-section area less than 1% of the maximum bar are not shown in
the optimized layout. A quantitative comparison of the results with both fine and coarse ground
structures shows that using the fine ground structure leads to an objective value 16% lower than
that of the coarse structure. Euler buckling of compressed members of the optimized layouts were
examined for the required load bearing capacity and it is found that they are all imposed. This
demonstrates the capability to deal with design problems that involve both Euler buckling and
chain stability, just by using a geometrically nonlinear model that can capture all buckling modes
so that they are implicitly accounted for in the optimization.

(a) Coarse ground structure

(b) Optimized design with a coarse ground structure

Figure 14: Truss topology optimization accounting for Euler buckling and chains – design of a
cantilever following Achtziger (1999), with a coarse ground structure.

5.3 Optimizing for various global prescribed deformations

In the previous examples, geometric nonlinearity has been used in order to take into account
buckling behavior. In the following example, another interesting application is presented which
emphasizes the influence of the chosen prescribed displacement on the outcome of optimization.
We investigate the optimization of a clamped beam domain.

Figure 15: Optimizing for various global prescribed deformations – Geometry of the design domain,
applied load and prescribed displacement.

The geometry of the design domain, the applied load and the prescribed displacement are shown
in Fig. 15, and the ground structure is shown in Fig. 16a. A symmetric design is sought, therefore
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the design domain consists of two symmetric halves each based on a grid of 4 × 6 hinges that is
connected with all possible bars including overlapping bars. Horizontal overlapping bars that cross
both halves were added to the connection between the two symmetric parts. The total number of
bars is 540 and each bar is divided to two co-rotational beam elements, giving 1752 analysis DOF
and 272 design variables.

In this example, the optimization is repeated for various magnitudes of the prescribed dis-
placement. In addition, a solution without any geometric nonlinearity is generated for the sake of
comparison. For generating the linear solution, a linear beam element was used and only global
imperfection was applied. When solving for various prescribed displacements, the co-rotational
beam element was used and both types of imperfections were applied. Global imperfection of
camber shape with 0.1 in vertical and horizontal directions, were used here to induce chain insta-
bility; and local imperfections of 1% were applied to induce Euler buckling. Formulation (MaxF)
was implemented with a given volume of V ∗ = 0.2; Amax = 6.7 · 10−2 and Amin = 6.7 · 10−8.
A move limit of 0.1 was imposed on MMA design updates. The initial truss consists of uniform
cross-sections of 2.67 · 10−4 and satisfies the volume constraint with a value 0.2.

(a) Ground structure (b) Optimized layout #1 with linear model

(c) Optimized layout #2 with up = 1 · 10−6 (d) Optimized layout #3 with up = 1 · 10−2

(e) Optimized layout #4 with up = 5 · 10−2 (f) Optimized layout #5 with up = 1 · 10−1

Figure 16: Optimization of a clamped truss structure for various magnitudes of the prescribed
displacement.

The optimized layouts for different deformation scales are shown in Fig. 16b-f and are numbered
1-5 for convenient comparison. Results of the optimization are summarized in Table 3 and full
response curves of all layouts are presented in Fig. 17 for two values of the prescribed displacement
– up = 1 · 10−6 and up = 1 · 10−1. Due to the highly nonlinear behavior in large deformations, it
was difficult to compute full response curves of layouts 1-3 using a standard displacement control
scheme – this is in fact expected as these designs were optimized for small displacements. Therefore,
an arc-length scheme was used to resolve the nonlinear analysis. In Fig. 17b, layout 1 is solved
with local imperfection of 0.01 hence it buckles and so are layouts 2-4; and in Fig. 17a all layouts
were solved using linear analysis in small prescribed deformation, without local imperfection, and
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it can be seen that the maximum load-bearing capacity obtained in layout 1.

(a) Small prescribed displacement (b) Large prescribed displacement

Figure 17: Full nonlinear response curves of the optimized designs of a clamped truss structure.

Table 3: Optimization of a clamped truss structure for various magnitudes of the prescribed
displacement

Layout Analysis up θ (initial) θ (optimized) Design iterations

1 Linear - - - -
2 Non-linear 1 · 10−6 1.892 · 10−4 21.12 · 10−4 35
3 Non-linear 1 · 10−2 2.116 · 100 20.69 · 100 100
4 Non-linear 5 · 10−2 2.146 · 100 92.82 · 100 214
5 Non-linear 1 · 10−1 2.579 · 100 183.7 · 100 200

A comparison between the optimized layouts clearly reveals the influence of the prescribed
displacement on the nature of the optimized layout. Layouts obtained with small prescribed
displacements contain long compressed bars, whereas under large displacements the optimization
procedure generates layouts with long tensioned bars and short compressed bars. Also in this
example, it is found that Euler buckling is imposed in compressed members of all the optimized
layouts which were examined for the optimized load bearing capacity. As the magnitude of the
prescribed displacement increases, the dominant load path switches from compression to tension, as
can be seen by comparing Fig. 16c,d to Fig. 16e,f. This demonstrates the potential of the proposed
formulation to be utilized not only for accounting for buckling, but also for including geometric
non-linearity in the optimal design in general. In cases where nonlinear response is desired, or
if the structure should maintain its stability also under large deformations, then the prescribed
displacement can be chosen accordingly and optimization will lead to optimized and safe designs,
based on the full non-linear analysis. Similar conclusions were deduced by (Lindgaard and Dahl,
2013) where optimal design of snap-through problems at a high load level lead to tension loaded
structures and snap-through buckling was avoided.

6 Conclusions and future work

An approach capable of accounting for all buckling phenomena in truss optimization was presented
in this paper. In the proposed optimization problem formulation, buckling is implicitly taken into
account using a geometric nonlinear analysis, instead of imposing a large number of constraints.
Several demonstrative examples and comparisons to benchmark results from the literature, show
that the proposed approach is able to capture all buckling phenomena in trusses, namely global
buckling, Euler buckling and chain stability, that results from the use of the ground structure
approach. In addition, it is shown that the proposed formulation can avoid difficulties arising when
imposing buckling constraints, such as the singularity of optimal solutions. A possible limitation
is that optimization is driven by the end compliance objective, while for statically indeterminate
optimized designs this objective may not capture all internal buckling occurrences – however this
phenomenon was not encountered in the test cases.
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It is evident that most of the computational effort in this approach is invested in computing
the full geometric non-linear response, especially for non-stable intermediate designs. On the other
hand, avoiding a large number of buckling constraints can simplify the solution of the nonlinear
optimization problem. It is important to point out that the final topology is achieved in a relatively
small number of design iterations, whereas most of the subsequent iterations are performed in order
to remove overlapping bars. The choice of local and global imperfections has a significant effect
on the results of the optimization procedure and on the types of buckling that are avoided in the
optimized design. Furthermore, assuming non-consistent imperfections may lead to non-optimized
layouts and cause convergence difficulties in the non-linear analysis.

In the current study, a well-established geometric non-linear beam finite element has been used
successfully for capturing buckling. Future work will focus on enhancing the finite element model;
improving the computational efficiency; further investigating the effect of choosing various imper-
fections; considering shape optimization of nodes positions; and accounting for stress constraints in
a similar approach based on material nonlinearities, see (Amir, 2016) in the context of continuum
topology optimization. Imperfections have been assumed according to the first buckling mode or
deformations of the initial design only, and in some examples, bifurcation buckling was noticed
within the optimization process, though not in the final design. This highlights an attractive
extension that can be to consider various imperfections and optimizing the buckling resistance
for the worst case, following Lindgaard et al. (2010), with emphasis on buckling mode-switching
and imperfection sensitivity. Finally, the current formulation leads to a continuous distribution of
cross-section areas. Therefore, we intend to enhance the applicability of this approach by adding
practical considerations such as choosing standard cross-sections for bars or limiting the number
of bars at connections. This can be achieved by penalizing continuous variables.
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