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Abstract

This paper presents an effective approach for achieving minimum-cost designs for seismic retrofitting
using nonlinear fluid viscous dampers. The damping coefficients of the dampers, and the stiffness co-
efficients of the supporting braces are designed by an optimization algorithm. A realistic retrofitting
cost function is minimized subject to constraints on inter-story drifts at the peripheries of frame struc-
tures. The cost function accounts for costs related to both the topology and the sizes of the dampers.
The behavior of each damper-brace element is defined by the Maxwell model, where the force-velocity
relation of the nonlinear dampers is formulated with a fractional power law. The optimization prob-
lem is first posed and solved as a mixed-integer problem. To reduce the computational effort required
in the optimization, the problem is then re-formulated with continuous variables only and solved with
a gradient-based algorithm. Material interpolation techniques, that have been successfully applied in
topology optimization and in multi-material optimization, play a key role in achieving practical final
design solutions with a reasonable computational effort. Promising results attained for 3-D irregular
frames are presented and discussed.

Keywords: Energy dissipation devices; Viscous dampers; Seismic retrofitting; Irregular structures;
Topology and sizing optimization; Material interpolation functions.

1 Introduction

Fluid viscous dampers are energy dissipation systems that became very popular in earthquake engineering.
They have been extensively used in several branches of the US military, and after the end of the Cold
War in 1990 they became available for civil applications [1]. The history of successful applications of fluid
viscous dampers in the military proved their reliability, and their use for seismic purposes was validated
after proper testing between the years 1990 and 1993 [2, 3]. In this period, it was also shown that the
use of fluid viscous dampers is also appropriate for wind and other types of transient excitations. The
advantage of using fluid viscous dampers for seismic design and retrofitting is strongly related to their
ability to dissipate part of the energy transferred from the earthquake to the structure, thus reducing the
deformation demand of the structure. As a result, if properly designed, an added damping system could
enhance the structural performance of new and existing buildings under seismic excitation, improving
also their safety.

Viscous dampers have been tested under earthquake loading and models for predicting their behavior
have been proposed [4]. These tests showed that the hysteretic behavior of fluid viscous dampers can be
defined by a nonlinear fractional power law of the form:

fd = cdsgn(vd)|vd|α (1)
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where fd is the force in the damper, cd its damping coefficient, sgn the signum function, vd the relative
velocity between the dampers’ ends, and α the velocity exponent. In general, α can vary between 0.15
and 1 [5, 6]. In [7] it was also showed that nonlinear fluid viscous dampers can achieve the same response
reduction in a structure of linear viscous dampers, but with smaller forces in the dampers. And since
the dampers’ cost depends also on their peak force, the use of dampers with a nonlinear behavior may
have also economic advantages. Thus, nowadays engineers and producers consider the more general
formulation for the damper’s force-velocity relation based on the nonlinear fractional power law given
in Eq. (1) [8, 9, 10, 11, 12, 13, 14]. In this work too, we will consider this formulation of the dampers’
viscous behavior.

In general, dampers are connected to the structure and to a supporting brace, and often the assump-
tion of “infinitely stiff” braces is made. As a matter of fact, braces have an upper limit in terms of their
stiffness. Considering a finite stiffness of the brace could significantly affect the damper-brace mechanical
behavior [15]. It follows that the ratio between the size of a damper and its supporting brace becomes
of crucial importance. For example, an unproportionate high damping coefficient may cause the locking
of a viscous damper during an earthquake, with a consequent concentration of the deformations on the
brace. This would result in an undesired damper-brace behavior. From these observations comes the
need for a simultaneous optimal design of the fluid viscous dampers and their supporting braces. This
is reflected is several research contributions [16, 17, 18, 19, 20, 21, 22]. In particular, in [17] viscous
dampers are designed through an optimization procedure considering a given ratio between the damping
coefficient and the stiffness coefficient . The results show that not considering the finite stiffness of the
dampers and the supporting braces would result in an overestimation of the damper’s effectiveness, thus
leading in some cases to not conservative results. A gradient-based approach for the simultaneous design
of viscoelastic dampers and their supporting braces was presented in [18]. Also in this work it was showed
that when the brace stiffness is limited, it becomes of major importance to include it in the damper-brace
model. For these reasons, in this work the design of the added damping system will involve both the
dampers and their supporting braces.

There are few aspects that affect the performance of an added damping system based on fluid viscous
dampers. The first is the size of the dampers, which is typically expressed in terms of the peak resisting
force that they can produce. Then, the distribution of the dampers within the structure that needs to be
retrofitted. These aspects strongly influence the possibility of reducing effectively peak inter-story drifts
and story accelerations of structures subject to seismic excitation [23, 24]. Moreover, the dampers’ size
and distribution have a crucial effect on the retrofitting cost, as we will see later on, and can significantly
determine whether fluid viscous dampers will be preferred over other energy dissipation technologies.
As a consequence, methodologies have been proposed for the optimal distribution and sizing of viscous
dampers. Several authors proposed methodologies for the optimal distribution of given sets of dampers
with predefined properties [25, 26, 27]. Although these are practical approaches, and they identify
optimized distributions of dampers, they need to predefine many of the design aspect beforehand, such
as the number of the dampers to be allocated and their sizes. Other authors focused on the more general
optimization problem of the simultaneous dampers’ distribution and size selection [28, 24, 29]. These
approaches select the dampers’ sizes from a set of predefined discrete values. As a result, they identify
practical dampers’ distributions, but typically with a high computational cost due to the combinatorial
nature of the problem. To reduce the computational cost of the problem at hand, other methodologies
have been proposed where the optimization problem is formulated with continuous design variables only.
The design variables are typically the damping coefficients of the dampers characterizing their mechanical
behavior [30, 31, 32, 33, 35, 36, 37, 34, 38, 39]. These methodologies based on continuous problem
formulations result in optimized distributions of dampers with a wide variety of damping coefficients. To
transform these design solutions into practical ones, rounding techniques or interpretation of the results
should be applied. Unfortunately it is not yet clear how to transform continuous dampers distributions
into practical ones, nor whether the optimality of the solutions achieved could be spoiled due to the
interpretation of the results. Recently an attempt was made to develop methodologies able to identify
practical distributions of dampers with a reasonable computational cost. In [40], for example, the authors
propose a gradient-based optimization approach for the placement and sizing of linear viscous dampers.
The dampers are selected from a limited number of available size-groups (i.e. dampers with identical
damping coefficients), and distributed in irregular 3-D frames by an optimization algorithm. Moreover,
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the properties of each size-group are also part of the variables of the problem. In [41] this approach is
further extended considering a more complete realistic retrofitting cost function as the objective function
to be minimized. The cost function includes costs associated with the dampers’ distribution in the
structure, the manufacturing of the dampers, and the prototype testing. However, it should be mentioned
that in these optimization-based approaches, linear viscous dampers connected to infinitely stiff braces
were considered.

In this paper, we rely on the approach presented in [40] and [41], but we make important steps
forward in order to accommodate the more general design of nonlinear fluid viscous dampers and their
supporting braces in a practical and computationally efficient optimization-based seismic retrofitting
approach. In particular, we will consider damper-brace elements made of two linear springs and a
nonlinear dashpot in series. In this way it will be possible to account for the stiffness of the braces and
of the dampers, and for the damping property of the viscous dampers. As we will see, a more rigorous
formulation of the manufacturing cost of the dampers is considered, based on the dampers’ peak forces.
Additionally, the gradient-based optimization algorithm is improved by considering a modified objective
function, and by adding a post processing phase which allows to achieve more discrete and practical final
designs. The dampers and their supporting braces are distributed in given structures and sized, selecting
their sizes from a limited set of available size-groups. Each size-group is characterized by damper-brace
elements with the same mechanical properties. The size-groups are limited in number to achieve final
practical designs, but their properties are not predefined and are optimized simultaneously within a single
problem formulation. The objective function to be minimized is the realistic retrofitting cost function
presented in [41], which has been further enhanced due to the new problem formulation considered in
this paper. Inter-story drifts at the peripheries are constrained to allowable values. These are evaluated
with nonlinear time-history analyses considering an ensemble of realistic ground motions. Initially, the
problem is formulated as a mixed-integer optimization problem, and it is solved with genetic algorithms
(GA). Subsequently, the initial mixed-integer problem formulation is translated into a continuous one.
This allows the solution of the nonlinear programming problem through a gradient-based approach, which
reduces significantly the computational cost required for its solution. Final practical designs are achieved
by means of material interpolation functions. These are interpolation schemes extensively applied in the
context of structural topology optimization, which lately proved to be effective also in the context of
seismic retrofitting with fluid viscous dampers based on optimization [40, 41]. Since the problem at hand
is highly nonlinear and nonconvex, and the optimization is performed with an evolutionary algorithm (i.e.
the genetic algorithm) and with a gradient-based algorithm, there is no formal guarantee of optimality
in a global sense of the solutions achieved with both approaches.

The remainder of the article is organized as follows: In Sect. 2 we present the governing equations of
the problem; The mixed-integer programming problem formulation is introduced in Sect. 3, with details
on the design variables, the performance index, and the cost function considered; In Sect. 4 the mixed-
integer programming problem is reformulated into a continuous optimization problem. The details for this
transformation are given in specific sections; Finally, in Sect. 5 several results regarding the optimization
of realistic irregular frames are presented, including a comparison between the results achieved with a
genetic and a gradient-based algorithm; In Sect. 6 some final considerations and conclusions are drawn.

2 Governing equations

In this section, we present the governing equations for the dynamic equilibrium of a structure coupled
with an added damping system. We first present the model used for the characterization of the damper-
brace behavior. Subsequently, we focus on the system of differential equations of motion for a structure
equipped with nonlinear fluid viscous dampers and supporting braces.

2.1 Damper-brace system characterization

In this work we consider damper-brace systems made of two springs and a dashpot in series, as shown
in Figure 1. The first spring accounts for the stiffness of the supporting brace, while the second for
the stiffness of the damper. Last, the dashpot accounts for the damping property of each fluid viscous

3



damper. The two springs are modeled with a linear force-displacement behavior, while the dashpot
force-velocity behavior is defined by a fractional power law:

fb = kbub; fd = kdud; fd = cdsgn(u̇d) |u̇d|α (2)

where fb is the force in the brace, and fd is the force in the damper; kb is the brace stiffness, kd the
damper stiffness, and cd its damping coefficient; ub is the elongation of the brace, ud the elongation of
the damper, and u̇d the relative velocity between the ends of the damper. The exponent 0 < α ≤ 1
characterizes the nonlinear behavior of the dashpot. For α equal to one the damper is linear, while for α
that tends to zero the formulation mimics the behavior of a friction damper. The exponent α significantly
affects the computational effort required for integrating the equations of motion. The algorithm for the
time-history analysis developed by the authors and used in this work successfully solved the equations of
motion for values of α between 0.1 and 1. Due to equilibrium, the forces in the damper and in the brace
are equal (fb = fd). It follows that:

kbub = kdud = cdsgn(u̇d) |u̇d|α (3)

The axial stiffness of a brace can be easily calculated. The stiffness contribution of a fluid viscous
damper, on the contrary, is far less intuitive. It depends in fact on:

• The stiffness of the metal parts of the damper from one end to the other;

• The stiffness of the fluid column inside the damper;

• The expansion of the damper cylinder under pressure (which makes the fluid seem more compress-
ible).

Among the three components above mentioned, the second is the more complex to be defined. The fluid
under pressure behaves according to its bulk modulus curve, which is nonlinear. However, dampers of
a single manufacturer typically have their peak forces at similar limit pressures, and in general they are
also made of the same materials [42]. Thanks to this, many of the variables drop out and the estimation
of the dampers’ stiffness becomes more simple. For example, the end to end stiffness of a fluid viscous
damper, as tested by Taylor Devices [42], is such that it reaches its rated force with an elongation ud
(Eq. (2)) of approximately 3% of its rated stroke. This defines the stiffness of the damper that can be
considered as a constant property of the device.

The ratio between the damping coefficient of a damper, and the stiffness of the damper and the brace
is very important in the solution of the equations of motion. In fact, it characterizes how the deformation
demand is distributed between the dampers and the supporting braces. On this aspect depends also the
complexity of the integration technique required in each time step. For this reason, we define a ratio
between the damping coefficient of the dashpot and the equivalent stiffness resulting from the brace and
the damper. To pre-assign a reasonable value for this ratio, we consider the structure subject to a ground
acceleration. We can thus calculate the maximum inter-story drift (dmax) experienced by the given
structure. Then, we isolate a damper-brace element, and we subject it to an harmonic displacement
history, with amplitude dmax, and a frequency ω̄ equal to the first natural frequency of the structure
that is above 4 Hz. It is known, in fact, that dampers behave as pure dashpots for exciting frequencies
below a cut-off frequency of approximately 4 Hz [4]. At the maximum force (Fmax) experienced under
this harmonic loading, we assume that the damper will have a displacement between its ends equal to
the 3% of its maximum stroke (∆s). For the same force, we assume also that the brace will reach an
elongation ub equal to its ultimate displacement allowed (uy). That is, at the maximum force Fmax in the
damper-brace system we have that: The brace stiffness is kb = Fmax

uy
; The damper stiffness is kd = Fmax

3% ∆s
.

With regards to the brace, considering for example a brace with length Lb = 7000 mm and made
of FE360 steel: uy = εyLb =

fy
Es
Lb = 235MPa

210GPa 7000mm = 7.8mm, where εy is the axial deformation of
the brace corresponding to the ultimate elongation uy, fy is the yielding stress, and Es is the Young’s
modulus. For the damper we consider a rated stroke of ∆s = ±4 inches = ±10.16 cm. Hence, the
equivalent end-to-end stiffness of the damper-brace system which accounts for the deformability of both

4



Figure 1: Stiffening and damping contributions of
the initial damper-brace model.

Figure 2: Equivalent damper-brace model.

the brace and the damper can be calculated as follows:

keq =
Fmax
ub + ud

=
Fmax

εyLb + 3% ∆s
=

Fmax
7.8mm+ 3.05mm

∼=
cd|u̇dmax|α

10mm
(4)

where u̇dmax is the maximum relative velocity measured between the dashpot ends under the harmonic
loading considered. In particular, the ratio ρ is:

ρ =
keq
cd

= 0.1 |u̇dmax|α = 0.1
Fmax
cd

(5)

It should be noted that ρ is measured in 1
mm

(
mm
s

)α. In Eq. (5), both ρ and u̇dmax are unknown, because
they depend one upon each other. Through the following iterative procedure it is possible to evaluate
both of them:

1. Fix the values of cd and α, and initialize ρ (e.g. ρ = 1 1
mm

(
mm
s

)α);
2. Subject the damper-brace element to the harmonic displacement history u(t) = dmaxsin(ω̄t), and

evaluate Fmax;

3. Update ρ through the Eq. (5).

The steps 2 and 3 are repeated until the update of ρ between two consecutive iterations i − 1 and i
becomes sufficiently small (e.g. ρi−ρi−1

ρi−1
≤ 10−10 ). Once the ratio ρ is defined, we express keq as (Figure

2):
keq = ρ cd (6)

Therefore, for each damper-brace element the damping coefficient cd is the design variable, for a given
ratio ρ and exponent α.

2.2 Equations of motion

We consider generic 3-D irregular frames subject to an ensemble of realistic ground motions. Their
behavior is characterized by the mass matrix M, the inherent damping matrix Cs, and the stiffness
matrix Ks. Nonlinear damper-brace elements are distributed in predefined potential locations of the
structure. They all share the same ratio ρ, and exponent α, that have been already presented in Sec.
2.1. Each damper is characterized by a specific damping coefficient cd.

The responses of interest are evaluated with nonlinear time-history analyses. For each point t in
time, the dynamic behavior of a structure with Ndof degrees of freedom and Nd potential locations for
dampers is defined by a set of Ndof second order differential equations, coupled with a set of Nd first
order differential equations as follows:

Mü(t) + Csu̇(t) + Ksu(t) + TT fd(t) = −Meag(t)

ḟd(t) = D
(
keq
) [

Tu̇(t)−
(
D
(
cd
)−1D

(
|fd(t)|

)) 1
α
sgn(fd(t))

] (7)

In Eq. (7) u(t), u̇(t), and ü(t) are the displacement, velocity, and acceleration vectors of the degrees of
freedom relatively to the ground at time t; fd(t) is the vector of the resisting forces of the dampers at
time t; e is the vector that defines the location of the excitation; and ag(t) is the ground acceleration as
a function of time. D(·) is an operator that transforms a vector into a diagonal matrix, and a diagonal
matrix into a vector (as the diag(·) MATLAB function does). The matrix T is a transformation matrix,
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that transforms the global coordinates for the displacements and velocities (u, u̇) into local damper-brace
coordinates (dL, ḋ

L
). The readers are referred to [57] for a similar transformation of coordinates.

In order to be solved, the problem is first discretized in time, and then solved with the Newmark-β
method. In particular, in each time step the equilibrium is achieved by means of an iterative procedure.
In this procedure, in each step the dampers’ forces are approximated with a fourth-order explicit Runge-
Kutta method, as suggested in [43, 44]. For more details on Runge-Kutta methods the readers are
referred to [45]. The structural response is then corrected with the Newton-Raphson method. The
iterative procedure stops when the residual forces in each time-step are smaller or equal to a predefined
tolerance (e.g. 10−6).

3 Optimization problem formulation

In the following section, we first present the design variables involved in the problem formulation, which
play an important role in achieving final discrete and practical designs. Then, the retrofitting cost function
minimized in the optimization is introduced. Last, the constrained performance indices are presented.

3.1 Design variables

The goal is to size and distribute nonlinear fluid viscous dampers and their supporting braces in Nd

predefined potential locations of a given frame. The damper-brace elements can be chosen out of two
available size-groups, where for size-group we intend a group of elements with the same characteristics.
Thus, as we explained in Sec. 2.1, we have to determine the damping coefficients cd,i, that are collected
in the vector cd. The vector of damping coefficients is defined as follows:

cd = c̄dD(x1)(y11 + (y2 − y1)x2) (8)

In Eq. (8), c̄d represents the maximum damping coefficient available, and it is defined a priori. The
vector 1 has unit entries and size Nd × 1. The vector x1 has binary entries representing the existence
of a damper in each potential locations. In particular, a value of zero in the i-th entry of the vector
means that in the location i there is no damper, while a value of one that there is a damper. Also x2 is
a vector with binary entries, and it represents the association of each existing damper to one of the two
available size-groups. In the case of x2,i equal to zero, the damper in the i-th location belongs to the
first size-group. In the case of x2,i equal to one, the damper in the i-th location belongs to the second
size-group. The dimensions of the vectors cd, x1, and x2 are Nd × 1.

The two available damping coefficients that characterize the two size-groups are:

c̄1 = c̄dy1; c̄2 = c̄dy2 (9)

In Eq. (9), y1 and y2 are two continuous design variables that scale the maximum available damping
coefficient c̄d. The column vector x collects all the variables of the problem: xT =

[
xT1 ,x

T
2 , y1, y2

]
. Last,

it should be noted that the design indirectly extends also to the dampers’ supporting braces through the
parameter ρ, as has been illustrated in Sec. 2.1.

3.2 Cost function

In the work presented in this paper, we minimize a comprehensive formulation of the initial retrofitting
cost. This formulation resembles the one presented in [41], even though, as we will see, it has been
modified in order to formulate more rigorously the dampers’ cost. In recent work [46, 47, 48], the life-
cycle cost has been taken as the objective function to be minimized in similar design problems. These
cost formulations accounted for the initial, maintenance, and failure costs. In our approach, instead, we
focus only on the initial cost, considering a more complete formulation of this cost component.

Thus, also in this case the cost function J consists of three cost components:

J = Jl + Jm + Jp (10)
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The first and third cost components (i.e. Jl and Jp) have been proposed in [41]. The second cost com-
ponent (i.e. Jm) resembles the one presented in [41], but it is further enhanced in order to formulate the
manufacturing cost of the dampers based on their peak forces rather than on their damping coefficients.

In particular, the first cost component Jl represents the cost associated with the number of locations in
which dampers are installed. We allow the algorithm to allocate as many as one damper in each potential
location; hence, this component includes all costs associated with the preparation of the structure for the
damper installation and the architectural constraint that this installation will represent. Moreover, in
case of retrofitting, it can also account for the removal of existing nonstructural components. The first
component of the cost is defined as follows:

Jl = CT
l x1 (11)

where Cl is a Nd×1 vector in which the i-th component is a cost component related to the i-th component
of x1.

The second cost component, Jm, represents the manufacturing cost of the dampers. In principle,
the manufacturing cost of viscous dampers depends on the peak stroke and on the square root of the
peak force of the most loaded damper of each size-group [42]. We assume, in fact, that all dampers of
a specific size-group are designed so to have the same capacity. Since we are constraining inter-story
drifts, also the peak stroke of the dampers is indirectly limited. As a consequence, it does not affect
significantly the cost. Therefore, the manufacturing cost is defined as the square root of the peak force of
the most loaded damper from each size-group, multiplied by the number of dampers of the corresponding
size-group. Formally, it is written as follows:

Jm = Cm

{
xT1 (1− x2)

[
max
i

(
f̂d1,i

)]0.5

+ xT1 x2

[
max
i

(
f̂d2,i

)]0.5
}

(12)

where Cm is a coefficient used to homogenize the units of measure of Jm to the units of measure of Jl
and Jp, xT1 (1 − x2) is the number of dampers of the first size-group, xT1 x2 is the number of dampers of
the second size-group, and:

f̂d1 =
[
f̂d1,1 . . . f̂d1,i . . . f̂d1,Nd

]T
= D (1− x2) f̂d

f̂d2 =
[
f̂d2,1 . . . f̂d2,i . . . f̂d2,Nd

]T
= D (x2) f̂d; f̂d = max

t
(|fd(t)|)

(13)

f̂d is the vector of the peak forces in time for all dampers; the vector f̂d1 has the components of f̂d which
belongs to dampers of the first size-group, while f̂d2 those of the second size-group.

Modern seismic codes require to test one damper prototype from each size-group so to verify its
force-velocity behavior. As a results, we consider an additional cost component, Jp. This component
is formulated so that the number of different size-groups of dampers used for retrofitting should be
minimized:

Jp = Cp
[
H(xT1 (1− x2)) +H(xT1 x2)

]
; H(x) =

{
1 for x > 0

0 for x = 0
(14)

where Cp is the cost of prototype testing and design. The function H is the Heaviside step function. We
observe that: If all dampers are of the first size then Jp will be equal to Cp × [1 + 0]; If all dampers are
of the second size then Jp will be equal to Cp × [0 + 1]; In case dampers of both sizes exist then Jp will
be equal to Cp × [1 + 1].

3.3 Performance index

We are now considering the seismic retrofitting of 3-D irregular frames using nonlinear fluid viscous
dampers. As in [40], here too inter-story drifts are used as an appropriate measure of both structural and
nonstructural damage levels. Moreover, limiting the inter-story drifts enforces the assumption of linear
elastic behavior of the structure. This can be done by limiting the inter-story drifts to the value of drift
for which yielding occurs.
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In particular, the peak inter-story drift normalized by the allowable value is chosen as the local
performance index for 2-D irregular frames:

dc,i = max
t

(|di(t)/dallow|) ≤ 1 ∀i = 1, . . . , Ndrifts (15)

where the inter-story drift di(t) is the i-th constrained inter-story drift at time t; dallow its maximum
allowable value. In the case of 3-D frames, di(t) refers to the inter-story drifts of peripheral frames.

3.4 Mixed-integer optimization problem

At this point we have presented all the ingredients of our optimization problem. The following is its
mixed-integer formulation:

min
x

J = Jl + Jm + Jp

s. t.: dc,i = max
t

(|di(t)/dallow|) ≤ 1 ∀i = 1, . . . , Ndrifts

x1,k = {0, 1} k = 1, . . . , Nd

x2,k = {0, 1} k = 1, . . . , Nd

0 ≤ y1 < y2 ≤ 1

with Mü(t) + Csu̇(t) + Ksu(t) + TT fd(t) = −Meag(t), ∀ag(t) ∈ E

ḟd(t) = D
(
keq
) [

Tu̇(t)−
(
D
(
cd
)−1D

(
|fd(t)|

)) 1
α
sgn(fd(t))

]
u(0) = 0, u̇(0) = 0, fd(0) = 0

cd = c̄dD(x1)(y11 + (y2 − y1)x2), keq = ρcd

(16)

where E is an ensemble of ground motions considered; andNdrifts is the number of drifts to be constrained.
For optimizing the distribution and size of a single damper size-group, only the x1 and y1 variables are
necessary, thus it can be seen as a particular case. The problem (16) has been solved with a GA. The
results will be used for comparison in Sec. 5.

4 Gradient-based optimization

In order to reduce the computational effort required for the solution of the problem, we reformulate
the mixed-integer problem (16) with a continuous approximation of the problem. To this end, first we
introduce the material interpolation functions used to promote the convergence towards final discrete
solutions. The continuous problem is solved with an algorithm based on first-order information. Hence,
all the functions involved need to be continuously differentiable. For this reason, we approximate two
cost components, and the constraints with differentiable formulations. In particular we aggregate the
constraints into one single constraint. This reduces the number of additional analyses required for the
evaluation of the gradients, and as a consequence the computational cost of the sensitivity analysis.

4.1 Damping penalization

We are now reformulating the problem with continuous variables only. One of the main consequences is
that all the variables can now assume all the values between their upper and lower bounds. Looking at the
vectors of variables x1 and x2, we understand that their intermediate values should be avoided. Hence, we
introduce in the problem formulation the so-called material interpolation functions. These functions have
been successfully apllied in the field of structural topology and discrete material optimization. Among
them, SIMP (Solid Isotropic Material with Penalization) is the most popular and has proved to be very
effective in a wide range of applications [49, 50]. Its main idea is to penalize the intermediate values of
binary variables making them uneconomical, thus implicitly leading the optimizer towards a preference
of 0-1 values (in our problem, looking for instance at the i-th entry of the vector x1, this would mean
that a damper either does not exist or it does exist, respectively). Similarly, also RAMP (Rational
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Approximation of Material Properties) is a material interpolation function based on the same main idea
[51].

Very recently, the material interpolation functions have been introduced also in the context of
optimization-based seismic retrofitting. In particular, RAMP proved to be very effective for achieving
final discrete solutions [40, 41]. In the optimization problem presented herein, both SIMP and RAMP
were tested in the formulation of the damping coefficients (8). However, SIMP was chosen for the final
problem formulation since it proved to be more effective and promising in leading the optimizer towards
final discrete solutions. In this case, in fact, a combination of two SIMP functions has been applied to
the vectors x1 and x2 in the damping formulation as follows [52, 53, 54, 55]:

c̃d,i = cd0 + c̄d x
p
1,i

(
y1 + (y2 − y1)xp2,i

)
, i = 1, . . . , Nd (17)

where cd0 represents an artificial value of damping, and it avoids numerical issues with the Runge-Kutta
approximation used during the integration of the equations of motion. In the work discussed in this
paper cd0 is set to 10−6. In Eq. (17) for p = 1 we have a linear interpolation of the damping. For
increasing values of p, the penalizing effect on the values of x1 and x2 between zero and one increases.
This indirectly leads to final 0-1 optimal solutions.

4.2 Cost function reformulation

An important step for the reformulation of (16) into a continuous problem is the approximation of the
cost components Jm and Jp with differentiable formulations.

In the second cost component Jm we need first to approximate maxt (|fd(t)|) (Eq. (13)) with a r-norm
formulation:

f̃d =

(
1

tf − t0

∫ tf

t0

D (f(t))r dt
) 1
r

1 (18)

where r is a large even number. Then, we substitute maxi

(
f̂d1,i

)
, and maxi

(
f̂d2,i

)
(Eq. (12)) with two

differentiable weighted averages:

J̃m = Cm

xT1 (1− x2)

1TD
(
f̃d1

)q+1
1

1TD
(
f̃d1

)q
1


0.5

+ xT1 x2

1TD
(
f̃d2

)q+1
1

1TD
(
f̃d2

)q
1


0.5 (19)

where:
f̃d1 = D (1− x2) f̃d; f̃d2 = D (x2) f̃d (20)

When q is large the weighted average functions approach the maximal components of f̃d1 and f̃d2. Un-
fortunately, the formulation (19) did not work as we expected. The optimizer seemed to consider as
variables only x1 and x2, without modifying y1 and y2. The reason for this undesired behavior could be
that the variations ∆x1 and ∆x2 affected more the value of the objective function rather than ∆y1 and
∆y2. This problem was not encountered in [41], where the manufacturing cost considered for linear fluid
viscous dampers was based on their damping coefficient. In that case, in fact, the results showed a good
convergence to final discrete designs. Therefore, to avoid any prioritization between the design variables,
and motivated by the results presented in [41], we reformulated the cost component J̃m as follows:

J̃m =Cm1T
{

1fd0 + c̄dD (x1) (1y1 + (y2 − y2) x2)V g1
max+

+D (x2) c̄dD (x1) (1y1 + (y2 − y2) x2)
(
V g2
max − V g1

max

)}0.5 (21)

where fd0 is an artificial value of damper force set to 10−6, and it was needed to avoid numerical issues
in the objective function gradient. In (21), V g1

max and V g2
max are the ratios between the maximum peak

force and the damping coefficient of each size-group. They have constant values for a given value of
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penalization p in Eq. (17), and when p is increased V g1
max and V g2

max are updated. The details regarding
how the penalization p varies in the optimization process will be discussed in a later section. However,
since V g1

max and V g2
max have constant values they do not affect the gradient of the objective function. More

precisely, these two parameters are defined as follows:

V g1
max = max

[
D (1− x2)D−1 (c̃d) f̃d

]
; V g2

max = max
[
D (x2)D−1 (c̃d) f̃d

]
(22)

where the max function in (22) evaluates the maximal component of the vectors between square brackets.
V g1
max and V g2

max can also be seen as surrogate maximum velocities between the ends of the dampers of
the first and second size-group, respectively. With reference to the nonlinear force-velocity behavior of
the dampers (Eq. (2)), they resemble the following definition:

V =
fd
cd

= sgn(u̇d) |u̇d|α (23)

In this way, Eq. (21) represents the square root of the peak force of the most loaded damper from
each size group, multiplied by the number of dampers of the corresponding size-group. Additionally, J̃m
formulated as in Eq. (21) is convenient also from a computational point of view. In fact, it is formulated
explicitly in terms of the variables of the problem, and its gradient can be calculated directly without
requiring an additional adjoint sensitivity analysis.

In the third cost component Jp, the Heaviside step function needs to be regularized in order to be
continuously differentiable. As in [41], this is done through the exponential function presented in [56]:

H̃(x) = 1− exp(−β x) + x exp(−β). (24)

For β = 0 the function H̃ is linear, and it tends to match the Heaviside step function as β increases.
Considering Eq. (24), Jp becomes:

J̃p = Cp

[
H̃(xT1 (1− x2)/Nd) + H̃(xT1 x2/Nd)

]
=

= Cp[(1− exp(−βxT1 (1− x2)/Nd) + (xT1 (1− x2)/Nd)exp(−β))+

+ (1− exp(−βxT1 x2/Nd) + (xT1 x2/Nd)exp(−β))]

(25)

4.3 Aggregated constraint

As we saw previously with regards to the second cost component, also the maxt function in (15) is non
differentiable. Therefore, we reformulate also dc from Eq. (15) with a r-norm differentiable formulation
[57]:

d̃c =

(
1

tf − t0

∫ tf

t0

(D−1(dallow)D(Hu(t)))rdt

) 1
r

1 (26)

where H is a matrix that transforms the global displacements (u) into the constrained inter-story drifts.
It should be noted that for a given moment in time t̄, the result of the prouct D−1(dallow)D(Hu(t̄)) is
also a diagonal matrix. Also in Eq. (26) r is a large even number. Subsequently we reduce the number of
constraints to one, so to reduce the computational effort required in the sensitivity analysis from Ndrifts

analyses to one. In particular, we introduce the following aggregated inter-story drift constraint:

d̃c =
1TDq+1

(
d̃c
)

1

1TDq
(
d̃c
)

1
(27)

As we already mentioned, when q is a large number the weighted average (27) approaches the maximal
component of the vector d̃c.
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4.4 Final continuous optimization problem and sensitivity analysis

Finally, the continuous approximation of the optimization problem is the following:

min
x

J̃ = Jl + J̃m + J̃p

s. t.: d̃c =
1TDq+1

(
d̃c(tf )

)
1

1TDq
(
d̃c(tf )

)
1
≤ 1

0 ≤ x1,k ≤ 1 k = 1, . . . , Nd

0 ≤ x2,k ≤ 1 k = 1, . . . , Nd

0 ≤ y1 < y2 ≤ 1

with Mü(t) + Csu̇(t) + Ksu(t) + TT fd(t) = −Meag(t), ∀ag(t) ∈ E

ḟd(t) = D
(
k̃eq
) [

Tu̇(t)−
(
D
(
c̃d
)−1D

(
|fd(t)|

)) 1
α
sgn(fd(t))

]
u(0) = 0, u̇(0) = 0, fd(0) = 0

c̃d = cd01 + c̄dD(xp1) (y11 + (y2 − y1) xp2) , k̃eq = ρc̃d

d̃c =

(
1

tf

∫ tf

0
(D−1(dallow)D(Hu(t)))rdt

) 1
r

1

(28)

where for x1 ∈ IRNd , xp1 =
[
xp1,1 . . . x

p
1,Nd

]T
. The same definition applies to xp2.

The problem (28) has been solved with a modified sequential linear programming approach (SLP),
inspired by the cutting planes method [58, 59]. More details regarding the algorithm will be given in a later
section. With this method, in every optimization cycle a linearized sub-problem is solved. Therefore,
first-order derivatives of the objective function and of the aggregated inter-story drift constraint are
needed. The calculation of the objective function gradient in (28) (i.e. ∂J̃

∂x ) is straight forward, because it
is formulated directly in terms of the variables of the problem. The gradient of the aggregated constraint
(i.e. ∂d̃c

∂x ), on the other hand, requires an adjoint sensitivity analysis. To ensure the consistency of the
sensitivity calculated, we relied on the discretize-then-differentiate adjoint variable method [60, 61, 62].
Essentially, in this procedure we expand the discretized general constraint by adding to it zero terms
multiplied by adjoint variables. The zero terms are all the equations that must be satisfied to guarantee
the equilibrium in each time step. Then, the resulting discrete function is differentiated. The unknown
response derivatives are eliminated by collecting and equating to zero the terms multiplied by them.
This results in a set of transient linear equations where the unknowns are the adjoint variables. Once
these equations are solved it is possible to calculate the sensitivity through the adjoint variables. A more
detailed description of this cumbersome procedure would be out of the scope of this paper. Ultimately,
the adjoint sensitivity analysis procedure results in the evaluation of the vector ∂d̃Tc

∂cd =
[
∂d̃c
∂cd 1

. . . ∂d̃c
∂cdNd

]
,

and the complete derivatives are computed with the chain rule:

∂d̃c
∂x1

=
∂cd
∂x1

∂d̃c
∂cd

;
∂d̃c
∂x2

=
∂cd
∂x2

∂d̃c
∂cd

;
∂d̃c
∂y1

=
∂cd
∂y1

∂d̃c
∂cd

;
∂d̃c
∂y2

=
∂cd
∂y2

∂d̃c
∂cd

(29)

4.5 Optimization algorithm

The optimization problem (28) is highly nonlinear and nonconvex. Therefore, in what follows we discuss
several precautions that we included in the optimization algorithm.

4.5.1 Continuation scheme

The optimization problem (28) is based on few nonlinear components that increase its complexity, such
as: the penalized damping coefficients (17); the differentiable approximations of the max functions (26)
and (27); the differentiable approximation of the Heaviside step function (24) used in the reformulation
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of the third cost component (25). These components are characterized by the parameters p, s, r, q, β,
that need to assume high values in order to produce meaningful approximations. Experience showed that
it is convenient to increase these parameters gradually in a stepwise manner, known also as continuation
scheme. In particular, the parameters p and s are increased by a fraction of their value every time a local
convergence criterion in a continuation step is satisfied for a certain number of iterations. The criterion
requires the norm of the variables’ updates to be smaller than a certain tolerance for five consecutive
iterations, that is: ‖xk − xk−1‖ ≤ εp,s. Moreover, a parametric study showed that it is more efficient
to start the optimization analysis with limited but noticeable initial values of these parameters. The
parameters r and q increase every iteration with a constant step-size; β is scaled by the coefficient s,
which varies between zero and one. The coefficient s scales also the cost components Cl and Cp, so
to progressively and smoothly include the first and third cost components in the objective function as
the algorithm converges to a more and more discrete solution. Moreover, conservative moving limits are
imposed in the solution of the linear subproblems. As a consequence, the updates of the variables x1,
x2, y1, y2, are found in a neighborhood of the solution of the previous subproblem. Details regarding the
specific values of these parameters are given in the numerical examples.

4.5.2 Management of the constraints

As we already mentioned, we solved (28) with a modified sequential linear programming approach inspired
by the cutting planes method. In every iteration of standard sequential linear programming, a linear
subproblem is solved. In the algorithm discussed herein, the subproblems expand, as in each iteration
the new linearized constraint is added to the set of constraints considered. Due to the non-convexity of
our problem, and in particular of the aggregated constraint, it may happen that a constraint is active
even though the current solution strictly falls into the feasible domain. In other words, it may happen
that a constraint cuts the feasible domain directing the algorithm towards too conservative solutions.
This is clearly shown in Figure 2 of [36]. The sequential linear programming algorithm was modified in
order to nullify and disregard these undesired constraints in the following iterations.

4.5.3 Convergence to a discrete solution

The problem that we solved was a penalized continuous optimization problem. Thus, for low initial values
of the penalization the algorithm converged towards a continuous solution. Through the iterations, as
the penalization (i.e. the parameter p) grew, the algorithm shifted its preference towards values, for the
variables x1 and x2, more and more close to their boundaries. From initial results, we observed that
the algorithm tended to be reluctant to converge to clean final discrete solutions, characterized by crisp
distributions of 0-1 values for the vectors x1 and x2. To improve the convergence of our algorithm towards
final binary solutions in terms of x1 and x2, we modified the objective function to be minimized:

Jtot = (1− p

pmax
)J̃ + c̄d

p

pmax
Jbinary (30)

where J̃ was presented in Sec. 4.2, and Jbinary is defined as follows [63, 64]:

Jbinary = xT1 (1− x1) + xT2 (1− x2) (31)

The component Jbinary is zero when all the values of x1 and x2 are binary. For intermediate values of
x1 and x2, Jbinary is different from zero and positive. Jbinary is also multiplied by c̄d so that numerically
the two components of Jtot have comparable values. Essentially, the purpose of Jbinary is to assist the
material interpolation functions (Eq. (17)) in promoting final discrete solutions. In fact, for small values
of the penalization p, the function to be minimized is Jtot ∼= J̃ . As a consequence, the algorithm is driven
towards initial minimum-cost continuous design solutions. When the penalization grows, the intermediate
values of x1 and x2 becomes inconvenient. Simultaneously, the influence of the component Jbinary on the
total cost increases, while the effect of J̃ decreases. For high values of p Jtot ∼= Jbinary, and the algorithm
is pushed towards a preference of final solutions that are binary with respect to x1 and x2. This allows
the translation of the initial continuous damping distribution into the closest mixed-integer equivalent.
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As p grows and Jbinary becomes more influential (Jtot ∼= Jbinary) it may happen that the algorithm
increases the damping coefficients of the two size-groups since it can satisfy anyway the constraint with
no additional cost. To avoid this, we progressively modify the upper and lower moving limits of the
variables y1 and y2, in a way that for high values of p the bounds of y1 and y2 almost coincide with the
current optimized values of y1 and y2.

4.5.4 Convergence criteria

The methodology is assumed to have reached the final optimized solution if: The parameter s equals
smax = 1; The norm of the update of the design variables in the current k -th iteration is smaller than
a predefined value ||xk − xk−1||2 ≤ ε; The maximum normalized inter-story drift dc is smaller or equal
than the allowable one, dallow, with a certain tolerance. More details regarding these parameters will be
given in Sec. 5.

4.5.5 Post processing

At the end of the optimization analysis, the entries of x1 and x2 that are not exactly binary are rounded.
As a consequence, it may happen that the optimality of the rounded solution is somehow spoiled, and that
it violates the drift constraints or that it is too conservative. Therefore, we introduced a post processing
phase where a new optimization is carried out. In this case the only variables are y1 and y2 for the given
(rounded) x1 and x2. The objective function minimized is only the cost associated to the manufacturing
of the dampers, J̃ = J̃m, because the other cost components are constant. For the remaining part, the
optimization problem solved in the post processing phase is identical to (28).

5 Numerical examples

In the following section, several numerical results are presented and discussed. They have been obtained
by optimizing two realistic structures. As already mentioned, the continuous formulation (28) was solved
with a modified SLP approach inspired by the cutting planes method, that was implemented in MATLAB
by the authors. The mixed-integer formulation (16) was solved using MATLAB’s built-in GA. The two
formulations are compared in terms of results achieved and computational effort required.

In particular, we consider two examples of asymmetric frames made of reinforced concrete. The first
was introduced in [65]. It was also solved in [57], where an optimal continuous damping was found,
and in [40] and [41] but yielding a discrete damping distribution. For this example the coefficient ρ of
the damper-brace elements (Sec. 2.1) was set to 1.0765. The second is a new example proposed by the
authors of this paper. It is based on a modification of the geometry of the first. The result is a double
setback irregular frame. In this case, the coefficient ρ of the damper-brace elements was set to 1.0867.

In both examples the column sizes are 0.5 m × 0.5 m in frames 1 and 2; 0.7 m × 0.7 m in frames
3 and 4 (see Figure 3 and Figure 4). The beam sizes are 0.4 m × 0.6 m and the floor mass is uniformly
distributed with a weight of 0.75 [ ton

m2 ]. Regarding the ground motion acceleration, out of the ensemble
LA 10% in 50 years [66], LA16 was considered first in both examples, acting in the y direction [57].
However, as we will see the proposed formulation can consider multiple acceleration records at once. In
these examples, we consider 5% of critical damping for the first two modes in order to build the Rayleigh
damping matrix of the structures. In Table 1 are presented the numerical values of several parameters
involved in the problem formulation. It should be noted that the cost components of the vector Cl were
all equal in the numerical experiments. Thus, in what follows Cl = Cl1, where 1 is a vector with Nd

unit entries. Moreover, the coefficient β was used only in the SLP algorithm. In the GA, in fact, a
true non-differentiable Heaviside step function was considered. Table 2 lists the initial and final values,
and the step sizes through which the parameters of the continuation scheme of the SLP algorithm are
initialized and increased.

In the SLP algorithm we defined three criteria for convergence to be satisfied simultaneously: The
first requires the parameter s to reach its maximum value; The second requires the update of the variables
xk−xk−1 between two consecutive iterations to be smaller or equal to the 15% of xk−1; The third requires
all the actual drifts to be smaller than the allowable value with a tolerance of 5%.

13



Table 1: Values of the parameters used in the numerical examples.

Parameter dallow c̄d α Cl Cm Cp β
[m] [kN

(
s
mm

)α
] [#] [#] [1/kN0.5] [#] [#]

Value 0.035 2000 0.35 100 1 50 100

Table 2: Values of the parameters of the continuation scheme of the SLP algorithm.

Parameter p s r q
Initial value 1.25 0.1 100 100
Increment 1.25 p 1.25 s 20 20
Final value 150 1 ∞ ∞

In the GA implementation, the population size was set to 350. In order to guarantee the convergence
of the algorithm to a global optimum with high probability, 10 different analyses were performed, of
which the best solution was chosen. In this case we defined two criteria for convergence: The first halts
the algorithm when the number of generations (i.e. iterations) reaches the maximum number allowable
Generations – 800; The second halts the algorithm when the weighted average relative change in the best
fitness function value over StallGenLimit generations is less than or equal to TolFun. StallGenLimit
is an integer set to 150, and TolFun is a positive scalar set to 10−6.

5.1 Eight-story three bay by three bay asymmetric structure

A 3-D view of the first frame to be optimized is displayed in Figure 3. Based on the results of [57], 16
potential locations for dampers were assigned at the exterior frames in the y direction.

Figure 3: Asymmetric 3-D frame considered in Ex. 5.1.

In the SLP solution, a move limit of 0.05 was considered. The process converged after 91 itera-
tions. The values of the damping coefficients obtained were c̄1 = 722.40 [kN

(
s
mm

)α
] and c̄2 = 1178.81

[kN
(

s
mm

)α
]. One slight constraint violation occurred in location number 13 where the drift exceeded the

allowable value by 0.32% (i.e. 0.0112 cm). Finally, the optimized solution obtained by the SLP proce-
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Figure 4: Asymmetric 3-D frame considered in Ex. 5.2.

dure was tested with the other ground motions from the ensemble. None of the other records caused any
significant violation of the drift constraint. With GA, the analysis that led to the best solution converged
after 199 iterations, leading to the final damping coefficients c̄1 = 645.04 [kN

(
s
mm

)α
] and c̄2 = 995.93

[kN
(

s
mm

)α
].The optimized distribution and damper sizes obtained with the two algorithms are shown

in Figure 5.
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Figure 5: SLP (continuous) and GA (dotted) solutions. Damping coefficient for each location in Ex. 5.1
considering the record LA16. The solutions involve dampers of both size-groups in the same locations.

In Table 3 we provide a comparison of the solutions achieved. It is possible to observe that from a
numerical point of view the solutions achieved with the two methods are characterized by similar final
costs and the same topologies (Figure 5). In fact the two algorithms chose to distribute the dampers in the
same locations. The solutions differ in the optimized sizes of the dampers’ groups and in the total damping
added in each location. This can be justified by the high non-convexity of the problem that causes the
presence of several local minima in proximity of the global optima. The main advantage in solving this
optimization problem with a gradient based approach is the significant reduction in computational effort
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needed to achieve a good solution, compared to that of a GA. To get a satisfying solution with a GA we
needed to consider a big population and to repeat several times the optimization analysis. In this case
we considered a population of 350 individuals, meaning that the algorithm performed 350 time history
analyses in each iteration, and we repeated the optimization process 10 times. On the other hand, the
SLP needed to compute two time history analyses each iteration for just one optimization process: one
for the structural response and one for the evaluation of the constraint gradient. The final solution of
the SLP is also characterized by a small constraint violation, because the SLP solves a series of linear
approximations of (28).

Table 3: Comparison of the solutions in Ex. 5.1 considering the record LA16. Compared to GA, SLP
provides a solution with a similar cost, a small constraint violation, but with a computational effort
smaller by 3.58 orders of magnitude.

J̃ , J
dc,max
dallow

c̄1 c̄2 Function evaluations
[#] [kN( s

mm)α] [kN( s
mm)α] (gradient evaluations are included

as function evaluations in the SLP)
SLP 1494.81 1.0032 (0.32%) 722.40 1178.81 2 · 91 ≈ 102.260

GA 1471.36 1 (0.00%) 645.04 995.93 10·350·199≈ 105.843

In order to further explore the capabilities of the methodology in relation with the cost function we
performed another analysis with the SLP and GA considering the same structure, but this time increasing
the component of the cost Cp from 50 to 500. As expected, both the algorithms chose a distribution of
dampers of a single size-group. The two solutions placed eight dampers in the same locations, slightly
differing only in terms of the damping coefficient assigned to the dampers. For a numerical comparison
of the results please refer to Table 4.

In particular, with SLP the process converged after 119 iterations. Most importantly, the final designs
consisted of only one damper size – as expected due to the high cost related to prototype testing. In
fact, eight dampers with damping coefficient c̄2 = 1090.60 [kN

(
s
mm

)α
] were actually placed in locations

1 − 5 and 10 − 12. The drift in the location number 10 violated the allowable value by the 0.27% (i.e.
0.0095 cm). Finally, the optimized design solution was checked with all other records from the ensemble.
None of the maximum values of the drifts exceeded significantly the allowable value. With GA, the
analysis that led to the best results converged after 173 iterations. As already mentioned, the dampers
distribution was almost identical to that of SLP. The final design, in fact, consisted of eight dampers in
the same locations as with SLP, and with damping coefficient c̄2 = 1096.11 [kN

(
s
mm

)α
].

Table 4: Comparison of the solutions in Ex. 5.1 with Cp = 500, and considering the record LA16. Both
solutions involves only one size-group of dampers.

J̃ , J
dc,max
dallow

c̄1 c̄2 Function evaluations
[#] [kN( s

mm)α] [kN( s
mm)α] (gradient evaluations are included

as function evaluations in the SLP)
SLP 1943.24 1.0027 (0.27%) N/A 1090.60 2 · 119 ≈ 102.377

GA 1945.39 1 (0.00%) N/A 1096.11 10·350·173≈ 105.782

5.2 Eight-story three bay by three bay double setback structure

In the second example we consider a similar 3-D frame structure but with a double setback. With this
example we want to test the ability of the proposed methodology to optimize the added damping system
for a structure with a pronounced torsional oscillatory behavior. For a structure of this kind, in fact, we
expect the placement of viscous dampers at the peripheries to be a key factor in reducing the inter-story
drifts. A 3-D view of the structure is displayed in Figure 4. Also in this case, 16 potential locations for
dampers were assigned at the exterior frames in the y direction.

In the SLP procedure the moving limit was relaxed and set to 0.1. This was needed to correct
a tendency of the algorithm of getting stuck in unfeasible portions of the design domain during the
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initial iterations of the optimization analysis. The optimization process converged after 121 iterations.
The optimal design solution was characterized by three dampers with the same damping coefficient
c̄1 = 1334.70 [kN

(
s
mm

)α
] placed in locations 1, 9, and 11. The only drift violation occurred in location

10, where the drift exceeded the allowable value by 0.27% (or 0.0095 cm). With GA the analysis that led
to the best solution converged after 170 iterations. The algorithm placed dampers in the same locations as
the SLP (i.e. locations 1, 9, and 11), assigning to the dampers the same damping coefficient c̄2 = 1340.71
[kN

(
s
mm

)α
].

In this example, the two solutions achieved with SLP and GA were almost identical. However, the
computational effort and time required by the SLP was much smaller than that of GA. Looking at the
function evaluations in Table 5, it is possible to verify that the ratio between the computational efforts
required by the two approaches was approximately 1 : 2500. The GA, in fact, needed to execute 350
nonlinear time-history analyses in each iteration, for 10 different optimization processes. The SLP, on the
contrary, performed only two nonlinear analyses in each iteration, as already explained in Sec. 5.1. The
solutions achieved with SLP slightly violated the drift constraint because of the linearization adopted for
the solution of (28).

Table 5: Comparison of the solutions in Ex. 5.2 considering the record LA16. Compared to GA, SLP
provides a solution with a similar cost, a small constraint violation, but with a computational effort
smaller by 3.39 orders of magnitude.

J̃ , J
dc,max
dallow

c̄1 c̄2 Function evaluations
[#] [kN( s

mm)α] [kN( s
mm)α] (gradient evaluations are included

as function evaluations in the SLP)
SLP 607.32 1.0027 (0.27%) 1334.70 N/A 2 · 121 ≈ 102.384

GA 608.04 1 (0.00%) N/A 1340.71 10·350·170≈ 105.775

The solution obtained with SLP was tested with the other records from the LA 10% in 50 years
ensemble. With two of the records, namely LA 14 and LA 18, a significant constraint violation (> 10%)
was encountered. Therefore, another optimization analysis was performed, considering simultaneously
LA 14, LA 16, and LA 18.

The optimization with SLP converged after 104 iterations. Only dampers with damping coefficient
c̄2 = 763.62 [kN

(
s
mm

)α
] were actually placed. The only drift violation occurred in location 12, where the

drift exceeded the allowable value by 0.14% (or 0.0049 cm). With GA the analysis that led to the best
solution converged after 286 iterations. The values of the damping coefficients obtained were c̄1 = 871.60
[kN

(
s
mm

)α
], and c̄2 = 997.67 [kN

(
s
mm

)α
]. The optimized damper size and distribution achieved by the

two algorithms are shown in Figure 6.

0 200 400 600 800 1000

c
d
  [kN(s/mm)α]

1

2

3

4

5

6

7

8

L
oc

at
io

n 
ID

0 200 400 600 800 1000

c
d
  [kN(s/mm)α]

9

10

11

12

13

14

15

16

L
oc

at
io

n 
ID

Figure 6: SLP (continuous) and GA (dotted) solutions. Damping coefficients for each location in Ex. 5.2
considering the records LA14, LA16, and LA18. The SLP solution involves dampers of only one size-
group.

In this example the solutions achieved with the two approaches were different. The solution obtained
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with GA required four dampers only and a smaller final cost, while SLP used one more damper than
GA, but involving only one damping (and stiffness) size. Nevertheless, as expected the comparison of the
computational effort necessary for achieving the final designs was favorable also in this case for the SLP.
In fact, the ratio between the number of function evaluations of the two approaches was approximately
1 : 4800, for the same reasons given in Sec. 5.1. The difference between the two solutions can be explained
by the high nonconvexity of the problem at hand, which causes the presence of several local minima in
the surrounding of the global optima. As expected, GA less likely gets influenced by local minima, and in
some cases can identify better solutions with respect to those achieved with a gradient-based approach.

Table 6: Comparison of the solutions in Ex. 5.2 considering the records LA 14, LA 16, and LA 18.

J̃ , J
dc,max
dallow

c̄1 c̄2 Function evaluations
[#] [kN( s

mm)α] [kN( s
mm)α] (gradient evaluations are included

as function evaluations in the SLP)
SLP 896.26 1.0014 (0.14%) N/A 763.62 6 · 104 ≈ 102.795

GA 804.33 1 (0.00%) 871.60 997.67 10·350·3·286≈ 106.478

6 Conclusions

In this paper, we presented a novel approach for the distribution and sizing of nonlinear fluid viscous
dampers and their supporting braces based on optimization. A realistic cost function is minimized,
considering the economical aspects of the dampers’ distribution in a structure, size, and prototype testing.
Constrains are imposed on the inter-story drifts at the peripheries of irregular 3-D structures. These are
computed with nonlinear time-history analyses considering an ensemble of realistic ground motions.
Therefore, the proposed methodology can be used for the performance-based seismic retrofitting of 3-D
irregular structures.

The novelty of the proposed approach lies in its formulation which allows a practical minimum-
cost design of nonlinear fluid viscous dampers and their supporting members based on optimization.
Damper-brace elements are selected from a limited number of available size-groups. The properties of
each size-group are also defined by the optimization algorithm. This results in practical design solutions
for seismic retrofitting that do not require any additional interpretation. An additional contribution is
the reformulation of the original mixed-integer problem into a continuous optimization problem, and
the solution with a genetic and a gradient-based algorithm, respectively. The analogy between the
two formulations is guaranteed thanks to material interpolation functions, successfully applied in the
context of continuum structural topology optimization. All the binary variables of the original mixed-
integer formulation are replaced by continuous ones, and their intermediate values are penalized by these
interpolation techniques. The resulting penalized continuous formulation implicitly leads the gradient-
based algorithm towards a preference of final discrete designs.

The numerical results showed how the proposed methodology successfully solved realistic design cases.
In Sec. 5.1 and Sec. 5.2 we showed several examples where both SLP and GA converged to very similar
designs. However, if on the one hand the results achieved with the two algorithms were in good agreement
in terms of structural performance and cost, on the other hand they also revealed a significant advantage
of the gradient-based algorithm in terms of computational effort. This may become even more evident
for problems with more design variables, due to the combinatorial nature of the problem, and with more
complex governing behaviors for the systems considered (e.g. nonlinear behavior of the structure and of
the dampers). The balance between the quality of the final solution and the effort required to achieve
it, places gradient-based approaches in an advantageous position over heuristic approaches for practical
applications. In many cases, in fact, practitioners dispose of limited computational resources and time
for their realistic and complex applications, and it may happen that genetic algorithms are not even a
reasonable option. In these cases, we expect the proposed methodology to simplify and promote the
optimization-based seismic retrofitting with fluid viscous dampers.
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