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The challenges of stress constraints

Characteristics of stress-constrained continuum topology optimization:
@ Basic engineering requirement: remain linear-elastic
@ Local measure — large number of constraints

@ Removal of material — vanishing of constraint
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The challenges of stress constraints

Characteristics of stress-constrained continuum topology optimization:
@ Basic engineering requirement: remain linear-elastic
@ Local measure — large number of constraints

@ Removal of material — vanishing of constraint

Challenge #1: COMPLEXITY

Large number of design variables, large number of constraints
Challenge #2: SINGULARITY

Difficult to capture true optimum by numerical procedures

Alternative approach for satisfying stress constraints
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Dealing with the challenge of complexity (1/2)

Strategy 1: consider all local constraints, solve with “active”

subsets
[Duysinx and Bendsge, 1998], [Bruggi and Duysinx, 2012]
[Pereira et al., 2004], [Fancello, 2006] - Augmented Lagrangian
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Dealing with the challenge of complexity (1/2)

Strategy 2: aggregate local constraints into global stress
function, using K-S or p-norm functions
[Yang and Chen, 1996], [Park, 1995], [Duysinx and Sigmund, 1998]

[Paris et al., 2007], [Le et al., 2010], [Paris et al., 2010] - regional block
aggregation
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Dealing with the challenge of complexity (1/2)

Other approaches
[Amstutz and Novotny, 2010] - topological derivative, external penalty
[Verbart et al., 2013] - artificial damage
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Dealing with the challenge of complexity (2/2)
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[Amstutz and Novotny, 2010] [Verbart et al., 2013]

[Le et al., 2010]
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Alternative approach based on elasto-plasticity (1/2)

Find a stress-constrained
layout by modeling
post-yielding response
and driving the design
towards “no-yield”

Minimize plastic strains s.t.
volume and compliance

Alternative approach for satisfying stress constraints 5
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Alternative approach based on elasto-plasticity (1/2)

Find a stress-constrained
layout by modeling
post-yielding response
and driving the design
towards “no-yield”

(.1) Smp 1: 36 design iterations with pr: = (b) Slcp z 35 funher desgn ferations with
1.5,p,, = 1.0, filter radius r = 0.015 and hard- pe=2. 5, filter radius r = 0.015 and
ening 1 = 0001, hardcml\g  Zoon

Minimize plastic strains s.t.
volume and compliance

51 further design iterations with  (d) Step 4: 35 further design iterations with
20, flterradus £ = 0015 p =307, =25, fierradis r = 0010 and
hardening H = 0.01

[Amir, 2011]
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Alternative approach based on elasto-plasticity (2/2)

Minimize volume s.t. plastic strains (= 0) and end-compliance

Alternative approach for satisfying stress constraints 6
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Alternative approach based on elasto-plasticity (2/2)

Minimize volume s.t. plastic strains (= 0) and end-compliance

Key aspects:

@ Stress constraints are evaluated accurately at local material
points;

e Formulation involves constraints on global quantities only;
@ Nonlinear FE analysis is required.
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Alternative approach based on elasto-plasticity (2/2)

Minimize volume s.t. plastic strains (= 0) and end-compliance

Key aspects:

@ Stress constraints are evaluated accurately at local material
points;

e Formulation involves constraints on global quantities only;
@ Nonlinear FE analysis is required.

Relative complexity: 1 analysis J optimization

Alternative approach for satisfying stress constraints
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Topology optimization with elasto-plasticity

Optimizing the energy absorbed by the structure

[Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999],
[Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007],
[Kato et al., 2015]
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Topology optimization with elasto-plasticity

Crashworthiness design
e.g. [Pedersen, 2004]
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Topology optimization with elasto-plasticity

Concrete / steel layouts
[Bogomonly and Amir, 2012]
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Topology optimization with elasto-plasticity

Effective energy dissipation
[Nakshatrala and Tortorelli, 2015]
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Topology optimization with elasto-plasticity

Failure mitigation based on continuum damage modeling
[James and Waisman, 2014]
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Topology optimization with elasto-plasticity
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Governing equations - elasto-plasticity

Rate-independent plasticity, J, flow theory:

von Mises yield criterion: flo,k) =3k —0,(k) <0
Bi-linear isotropic hardening: oy(k) = g}ff 4+ HEk
Associative flow rule: Pl = \oL
Evolution of internal hardening variable: k= \@Hép'”z

Solution on a local level by well-known return mapping algorithm
[Simo and Taylor, 1986] .
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Nonlinear FEA

Recasting as a nonlinear,
transient coupled problem
[Michaleris et al., 1994] :
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Recasting as a nonlinear,
transient coupled problem
[Michaleris et al., 1994] :
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Global incremental force equilibrium, displacement control:

"R("v," 0) = "6fext — [, BT "odV

Local incremental constitutive equations:

"My = "Rl (a1l
My = "lei("a—"ly
N

e = b (o)
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Problem formulation

Nelem v
Z,‘:1 ViXi
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min f(X) = — (volume fraction)
X Nelem
T
s.t.: gl(X) = —N0fext Nu + g* <0 (end-compliance, disp. control)
Netem ngts
gg(X) = NH:,'J <0 (plastic strains)
i=1 j=1
OSXI'S]-; I:]-a aNdv
with: R,("v,"0) =0 n= , N
Hn(”u,”*1 u,"v," 1v,x) =0 n=1,...N

Remarks:

@ Physical density X from density filter and Heaviside projection
[Bruns and Tortorelli, 2001, Bourdin, 2001, Guest et al., 2004, Xu et al., 2010] .

@ Solution obtained by MMA [Svanberg, 1987] .
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Design parameterization

Modified SIMP for stiffness and yield stress
[Bendsge, 1989, Sigmund and Torquato, 1997] :

E()_(l) = Emin + (Emax -

U}O/()_(i) = U}g,min + (OS,max -

PE > Po, [Maute et al., 1998]

J

!

“delayed” vyield strain for
intermediate densities

J

I

relaxation of singularity
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Adjoint sensitivity analysis
Backwards-incremental adjoint procedure [Michaleris et al., 1994] :

Augmented response functional
N
8o, v,0,%) = g("u, v, 0,%) = STIATIR(Y, "0) = 37 "y T H(u, e v, ", %)
n=1

Global adjoint equations for "X\

a('R) a("H)*la("H)}TnA o8 Tﬁ{ o8 6("H)*la("H)]T

T a() o) (") (") 9("v) o("v)  O("u)
a(™H)  a("H) ("H) 1 a("H) ] T 1,
B a("w) () B()  8("w)
8("R)TN>\ _ o
9("0) 9("0)
Local adjoint equations for "~
o("M) T, (R T, AT 8g T
= — A —
o) T o) o) T o)

Explicit derivatives w.r.t. design variables

0oy 08 . "H
ox; %
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Example: L-bracket (1/3)

Solution parameters:
@ nelx = nely = 160, filter radius = 0.025

e 0 =0.01
e E,i, =0.001, E,.x = 1000, 037,”,-” =0, O'B,max =1.8
e Continuation on pg, ps,, 3
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Example: L-bracket (2/3)
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Example: L-bracket (3/3)

In the optimized design:
@ Reentrant corner is circumvented,
o Compliance constraint is satisfied;
@ Maximum stress is the allowable stress.

von Mises stress

Alternative approach for satisfying stress constraints
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Summary and conclusions

@ Stress constraints can be achieved via elasto-plastic modeling
by minimizing or constraining the sum of plastic strains;

@ Stress violations are captured accurately without local
constraints;

@ Computational cost dominated by NLFEA - can be competitive
in large scale;

@ Oscillatory behavior - still much room for improvements.

von Mises stress.

Alternative approach for satisfying stress constraints 16
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Work in progress - oscillations

Volume minimization

350 400
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Stress

pE=3,pS=25H=0.01
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Sensitivity of stress

pE=3,pS=25H=0.01
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Derivative of stress
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Strain energy vs. strain

pE=3,pS=25H=0.01
1.5 : : : :

Strain energy
N

[
[3)

0 1 2 3 4 5 6
Normalized strain

Alternative approach for satisfying stress constraints 20



g Technion
Israel Institute of

Technology

Sensitivity of strain energy vs. strain
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Strain energy vs. stress

pE=3,pS=25H=0.01
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Sensitivity of strain energy vs. stress
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