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The challenges of stress constraints

Characteristics of stress-constrained continuum topology optimization:

Basic engineering requirement: remain linear-elastic

Local measure → large number of constraints

Removal of material → vanishing of constraint

Challenge #1: COMPLEXITY

Large number of design variables, large number of constraints

Challenge #2: SINGULARITY

Difficult to capture true optimum by numerical procedures
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Dealing with the challenge of complexity (1/2)

Strategy 1: consider all local constraints, solve with “active”
subsets
[Duysinx and Bendsøe, 1998], [Bruggi and Duysinx, 2012]
[Pereira et al., 2004], [Fancello, 2006] - Augmented Lagrangian

Strategy 2: aggregate local constraints into global stress
function, using K-S or p-norm functions
[Yang and Chen, 1996], [Park, 1995], [Duysinx and Sigmund, 1998]
[Paŕıs et al., 2007], [Le et al., 2010], [Paŕıs et al., 2010] - regional block
aggregation

Other approaches
[Amstutz and Novotny, 2010] - topological derivative, external penalty
[Verbart et al., 2013] - artificial damage
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Dealing with the challenge of complexity (2/2)

418 S. Amstutz, A.A. Novotny

Table 4 L-beam
α β σ̄M Area Compliance maxΩ

σM (uΩ)
σ̄M

CPU time (s) Mesh

104 10−2 40 1.74 186 1.01 891 26693

104 10−2 30 1.93 203 0.99 672 26708

104 10−2 25 2.05 181 1.01 536 26678

Thus, the current domain Ω is characterized by a function
ψ ∈ L2(D) such that Ω = {x ∈ D, ψ(x) < 0} and
D \ Ω̄ = {x ∈ D, ψ(x) > 0}. We compute the topolog-
ical derivative DT I α(Ω) = DT I (Ω) + αDT J (Ω) where
DT J (Ω) is given by formula (41) with γ0 and γ1 chosen
according to Table 1. Then we set G(x) = DT I α(Ω)(x) if
x ∈ D\Ω̄ and G(x) = −DT I α(Ω)(x) if x ∈ Ω . We define
the equivalence relation on L2(D):

ϕ ∼ ψ ⇐⇒ ∃λ > 0, ϕ = λψ.

Clearly, the relation G ∼ ψ is a sufficient optimality con-
dition for the class of perturbations under consideration.
We construct successive approximations of this condition
by means of a sequence (ψn)n∈N verifying

ψ0 ∈ L2(D),

ψn+1 ∈ co(ψn, Gn) ∀n ∈ N.

Above, the convex hull co(ψn, Gn) applies to the equiva-
lence classes, namely half-lines. Choosing representatives
of unitary norm for ψn , ψn+1 and Gn , we obtain the
algorithm:

ψ0 ∈ S,

ψn+1 = 1

sin θn
[sin((1 − κn)θn)ψn + sin(κnθn)Gn] ∀n ∈N.

The notations are the following: S is the unit sphere of
L2(D), θn = arccos 〈Gn ,ψn〉

‖Gn‖‖ψn‖ is the angle between the
vectors Gn and ψn , and κn ∈ [0, 1] is a step which is

determined by a line search in order to decrease the penal-
ized objective functional. The iterations are stopped when
this decrease becomes too small. At this stage, if the
optimality condition is not approximated in a satisfactory
manner (namely the angle θn is too large), an adaptive mesh
refinement using a residual based a posteriori error esti-
mate on the solution uΩn is performed and the algorithm
is continued.

5 Numerical experiments

Given a fixed multiplier β > 0, we consider the objective
functional

IΩ(uΩ) = |Ω| + βK (uΩ),

with |Ω| the area of Ω and the compliance

K (uΩ) =
∫

ΓN

g.uΩds.

Unless otherwise specified, the domain D̃ is equal to the
whole computational domain D. The material densities are
γin = 1 and γout = 10−3. The Poisson ratio is ν = 0.3. The
topological derivative of the area is obvious, and that of the
compliance is known (see Amstutz (2006); Garreau et al.
(2001)). In each case, the initial guess is the full domain
Ω0 = D.

Fig. 10 U-beam: boundary conditions, obtained design and zoom near a reentrant corner[Amstutz and Novotny, 2010]

So far, we have been considering a qp-relaxed Von Mises stress since it ensures that the stress is zero in
void elements. Next, the same problem is solved but now considering an unrelaxed stress; i.e. ε = p−q = 0
for which the stress is defined as σ = σ0 following Eq. (6). This means that the stress measure is the Von
Mises stress associated with solid material properties, E0.
For this problem, an optimized design was obtained with a relative volume of Vrel = 31.02% which is
nearly the same as in the previous result for the relaxed stress (Vrel = 30.00%). Comparing the density
distribution in Figure 7 with the previous result shown in Figure 6, it can be seen that both designs
are similar. On the other hand the stress distributions on which both design are based (relaxed stress
vs. unrelaxed stress) are different, as can be seen from comparing Figure 7b with Figure 6c. In this
case, the maximum unrelaxed stress is σmax = 17.56 and exceeds the admissible stress of σlim = 2.
However, it should be noted that the largest stress values are found in void regions, which results from
the unrelaxed stress definition in which the stress in the voids remains finite. Since void elements are
weak elements, the strains in these elements are relatively large and therefore the stress values are large
and dominating. If we would neglect this effect by setting the stress for lower density elements (ρ < 1/2)
to zero, the maximum stress value is σmax = 2.06 and close to the previous result for the unrelaxed stress.
In Figure 7c the stress distribution is shown omitting the lower density elements.
The most important observation is that using an unrelaxed stress definition in our method does not lead
to the general problems associated with the presence of singular optima. In the traditional methods
in which the admissible stress criterion is imposed as a hard constraint, not applying stress relaxation
will result in a final design which contains substantial regions of intermediate material. In these ‘grey’
regions the stress constraints in the elements are active and therefore will not be removed from the
design by the optimizer. In this method, large stresses will lead to more penalization and therefore
intermediate densities will be reduced to zero. The main reason to use a relaxed stress criterion here is
for post-processing reasons to suppress large and dominating stress values from the void elements.

(a) Density distribution
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(c) Stress distribution omitting el-
ements with density ρ < 1/2.

Figure 7: Optimized L-bracket design using internal stress penalization for α = 10 and δ = 0.04: a
relative volume of Vrel = 31.02% and a maximum unrelaxed stress of σmax = 17.56 if consider all element.
Omitting the lower density elements ρ < 1/2 gives the density distribution in c) for which the maximum
stress is σmax = 2.06

4. Conclusions
In this paper, a new method for stress-based topology optimization was presented. Analogous to penal-
ization of intermediate densities, penalization of overstressed material is performed. The method was
tested on two design problems and it was shown that designs were obtained for which the maximum
stress is close to the admissible stress.
An advantage of this method is that there is no need to transform the local stresses into global/regional
stress measures using aggregation functions in order to reduce computational costs related to the sensitiv-
ity analysis. Therefore, there is no need to apply additional measures (normalization/regional constraints)
to deal with the difficulties associated with the use of aggregation functions. Another advantage is that
the admissible stress criterion is not imposed as a hard stress constraint and therefore there are no van-
ishing stress constraints in this problem formulation. This eliminates the presence of singular optima
and its associated problems. It was shown that using an unrelaxed stress definition also gives a mean-
ingful stress-based design. The main reason to use a relaxed stress, as we did in most problems, is to
get meaningful stress values in the voids; an unrelaxed stress criterion will give finite stress values in
the voids. Finally, what can be considered as a disadvantage of this method, is that it is a penalization

9

[Verbart et al., 2013]
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Fig. 7 Density (top) and stress σ (bottom) for designs obtained with m = 1, 2, 4, 8, and 16 regions. a m = 1 (295 iter.), b m = 2 (108 iter.),
c m = 4 (105 iter.), d m = 8 (110 iter.), e m = 16 (108 iter.)

and then define the m regions as:

�k ≡ {ek, em+k, e2m+k, . . .} , k = 1, 2, . . . , m (14)

For the values of m = 1 and m = n, with n the number
of elements, we revert to the constraints of (6) and (9). If the
optimizer works perfectly, then as m increases the designs
improve. However, in practice the optimizer may converge
to a worse local minimum for a large m as shown in Fig.
7e. Also, as previously stated, m must not be too large lest
the computational expense becomes intractable. We note
that the regional constraint is similar to the “block aggre-
gated” constraint in París et al. (2007), although our region
definition differs. We also note that the proposed evolving
region definition further adds to the potentially problematic
non-differentiability of the constraints. However, we did not
observe any adverse effects as the designs converge.

To illustrate the effect that the number of regions m has
on the stress-constrained problem, we resolved the pre-
vious L-bracket example using the stress norm parameter
P = 4 with m = 1, 2, 4, 8, and 16 regions, cf. Fig.
7. We chose P = 4 here to highlight the effect made by
increasing the number of regions. The design obtained from
m = 1 region is unsatisfactory because a stress concen-
tration exists at the reentrant corner that is not removed.
As expected, the designs improve as the number of regions
increases. Indeed, even for m = 8 the stress concentration
is effectively removed and the stress distribution becomes
essentially uniform. In all designs, the maximum stress limit
of 1.2 MPa is achieved (via the normalization). Thus, for a
modest m - fold increase in our already efficient adjoint sen-
sitivity computation we are able to significantly improve the

designs. Additionally, we are able to use a relatively mod-
est stress norm parameter P = 4 which results in a smooth
design space which is easily traversed by the optimizer.

7 Multiple stress criteria and load cases

Our method is readily extended to accommodate multiple
local constraint types and multiple load cases. In engineer-
ing design practice, there are scenarios in which one wishes
to impose different stress constraints corresponding to dif-
ferent load cases, and possibly on different regions of the
structure. For instance, one load case may correspond to a
very severe load for which a stress constraint on the entire
structure would be related to the material’s yield strength;
additionally, there could be a load case related to a repet-
itive, damaging load for which a stress constraint on the
regions where the structure would be welded to its sup-
port, would be related to the material’s endurance limit. To
accommodate such instances, we could define our m regions
�k accordingly. However, we have found that this practice
produces regional biases that adversely affect the results.
Hence, we redefine the original constraint of e.g. (6) as:

σe

σ̄e
≤ 1, e = 1, 2, . . . , n (15)

Note that σ e is the respective local response, e.g. it repre-
sents either the element von Mises stress or the strain energy
density values, and σ̄e is its respective bound. To define the
regions based on the interlacing scheme of (14), we now

[Le et al., 2010]
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Alternative approach based on elasto-plasticity (1/2)

Find a stress-constrained
layout by modeling

post-yielding response
and driving the design

towards “no-yield”

i.e.

Minimize plastic strains s.t.
volume and compliance

(a) Step 1: 36 design iterations with pE =
1.5,pσy = 1.0, filter radius r = 0.015 and hard-
ening H = 0.001.

(b) Step 2: 35 further design iterations with
pE = 2.0,pσy = 1.5, filter radius r = 0.015 and
hardening H = 0.001.

(c) Step 3: 51 further design iterations with
pE = 2.5,pσy = 2.0, filter radius r = 0.015
and hardening H = 0.001.

(d) Step 4: 35 further design iterations with
pE = 3.0,pσy = 2.5, filter radius r = 0.010 and
hardening H = 0.01.

Figure 8.6: Minimization of plastic strains in an L-bracket.

139

[Amir, 2011]
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Alternative approach based on elasto-plasticity (2/2)

Current work:

Minimize volume s.t. plastic strains (= 0) and end-compliance

Key aspects:

Stress constraints are evaluated accurately at local material
points;

Formulation involves constraints on global quantities only;

Nonlinear FE analysis is required.

Relative complexity: ↑ analysis ↓ optimization
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Topology optimization with elasto-plasticity

Optimizing the energy absorbed by the structure
[Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999],

[Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007],

[Kato et al., 2015]

Crashworthiness design
e.g. [Pedersen, 2004]

Concrete / steel layouts
[Bogomonly and Amir, 2012]

Effective energy dissipation
[Nakshatrala and Tortorelli, 2015]

Failure mitigation based on continuum damage modeling
[James and Waisman, 2014]
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Governing equations - elasto-plasticity

Rate-independent plasticity, J2 flow theory:

von Mises yield criterion: f (σ, κ) =
√

3J2 − σy (κ) ≤ 0
Bi-linear isotropic hardening: σy (κ) = σ0

y + HEκ

Associative flow rule: ε̇pl = λ̇ ∂f∂σ

Evolution of internal hardening variable: κ̇ =
√

2
3

∥∥ε̇pl∥∥
2

Solution on a local level by well-known return mapping algorithm
[Simo and Taylor, 1986] .
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Nonlinear FEA

Recasting as a nonlinear,
transient coupled problem
[Michaleris et al., 1994] :

nR(nu,n−1 u,n v,n−1 v) = 0

nH(nu,n−1 u,n v,n−1 v) = 0

nv =


nεpl
nκ
nσ
nλ


Global incremental force equilibrium, displacement control:

nR(nv,n θ) = nθf̂ext −
∫
V BT nσdV

Local incremental constitutive equations:

nH1 = n−1
ε
pl + (nλ− n−1

λ)(
∂f

∂nσ
)T − n

ε
pl (associative flow)

nH2 = n−1
κ + (nλ− n−1

λ)

√
2

3
(
∂f

∂nσ
)T (

∂f

∂nσ
) − n

κ (hardening variable)

nH3 = n−1
σ + D

[
Bnu − Bn−1u − (nεpl − n−1

ε
pl )

]
− n

σ (elastic stress-strain)

nH4 = J2 −
1

3
(σy (κ))2 (yield surface)
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Problem formulation

min
x

f (x) =

∑Nelem
i=1 vi x̄i
Nelem

(volume fraction)

s.t.: g1(x) = −Nθf̂ext
TNu + g? ≤ 0 (end-compliance, disp. control)

g2(x) =

Nelem∑
i=1

Ngpts∑
j=1

Nκi ,j ≤ 0 (plastic strains)

0 ≤ xi ≤ 1, i = 1, ...,Ndv

with: Rn(nv,n θ) = 0 n = 1, ...,N

Hn(nu,n−1 u,n v,n−1 v, x̄) = 0 n = 1, ...,N

Remarks:

Physical density x̄ from density filter and Heaviside projection
[Bruns and Tortorelli, 2001, Bourdin, 2001, Guest et al., 2004, Xu et al., 2010] .
Solution obtained by MMA [Svanberg, 1987] .
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Design parameterization
Modified SIMP for stiffness and yield stress
[Bendsøe, 1989, Sigmund and Torquato, 1997] :

E (x̄i ) = Emin + (Emax − Emin)x̄pEi

σ0
y (x̄i ) = σ0

y ,min + (σ0
y ,max − σ0

y ,min)x̄
pσy

i

pE > pσy [Maute et al., 1998]

↓

“delayed” yield strain for
intermediate densities

↓

relaxation of singularity
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Adjoint sensitivity analysis
Backwards-incremental adjoint procedure [Michaleris et al., 1994] :
Augmented response functional

ĝ(u, v, θ, x̄) = g(Nu,N v,N θ, x̄) −
N∑

n=1

n
λ
T nR(nv, nθ) −

N∑
n=1

n
γ
T nH(nu, n−1u, nv, n−1v, x̄)

Global adjoint equations for nλ[
−
∂(nR)

∂(nv)

∂(nH)

∂(nv)

−1 ∂(nH)

∂(nu)

]T
n
λ =

∂g

∂(nu)

T

−
[
∂g

∂(nv)

∂(nH)

∂(nv)

−1 ∂(nH)

∂(nu)

]T

−
[
∂(n+1H)

∂(nu)
−
∂(n+1H)

∂(nv)

∂(nH)

∂(nv)

−1 ∂(nH)

∂(nu)

]T
n+1

γ

∂(nR)

∂(nθ)

T
n
λ =

∂g

∂(nθ)

Local adjoint equations for nγ

∂(nH)

∂(nv)

T
n
γ = −

∂(nR)

∂(nv)

T
n
λ −

∂(n+1H)

∂(nv)

T
n+1

γ +
∂g

∂(nv)

T

Explicit derivatives w.r.t. design variables

∂ĝexp

∂x̄i
=
∂g

∂x̄i
−

N∑
n=1

n
γ
T ∂

nH

∂x̄i
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Example: L-bracket (1/3)
Solution parameters:

nelx = nely = 160, filter radius = 0.025

δ = 0.01

Emin = 0.001, Emax = 1000, σ0
y ,min = 0, σ0

y ,max = 1.8

Continuation on pE , pσy , β
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Example: L-bracket (2/3)
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Example: L-bracket (3/3)
In the optimized design:

Reentrant corner is circumvented;
Compliance constraint is satisfied;
Maximum stress is the allowable stress.
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Summary and conclusions

Stress constraints can be achieved via elasto-plastic modeling
by minimizing or constraining the sum of plastic strains;
Stress violations are captured accurately without local
constraints;
Computational cost dominated by NLFEA - can be competitive
in large scale;
Oscillatory behavior - still much room for improvements.
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Work in progress - oscillations

0 50 100 150 200 250 300 350 400 450 500
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
Volume minimization

Alternative approach for satisfying stress constraints 17



Stress
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Sensitivity of stress
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Strain energy vs. strain
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Sensitivity of strain energy vs. strain
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Strain energy vs. stress
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Sensitivity of strain energy vs. stress
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