

An alternative approach for satisfying stress constraints in continuum topology optimization using nonlinear material modeling

Oded Amir odedamir@cv.technion.ac.il

Technion - Israel Institute of Technology Faculty of Civil & Environmental Engineering

WCSMO-11, 9 June 2015, Sydney, AUSTRALIA

The challenges of stress constraints

Characteristics of stress-constrained continuum topology optimization:

- Basic engineering requirement: remain linear-elastic
- \bullet Local measure \rightarrow large number of constraints
- $\bullet~\mbox{Removal}$ of material $\rightarrow~\mbox{vanishing}$ of constraint

Challenge #1: COMPLEXITY

Large number of design variables, large number of constraints

Challenge #2: SINGULARITY

Difficult to capture true optimum by numerical procedures

The challenges of stress constraints

Characteristics of stress-constrained continuum topology optimization:

- Basic engineering requirement: remain linear-elastic
- \bullet Local measure \rightarrow large number of constraints
- $\bullet~\mbox{Removal}$ of material $\rightarrow~\mbox{vanishing}$ of constraint

Challenge #1: COMPLEXITY

Large number of design variables, large number of constraints

Challenge #2: SINGULARITY

Difficult to capture true optimum by numerical procedures

Strategy 1: consider all local constraints, solve with "active" subsets

[Duysinx and Bendsøe, 1998], [Bruggi and Duysinx, 2012] [Pereira et al., 2004], [Fancello, 2006] - Augmented Lagrangian

Strategy 2: aggregate local constraints into global stress function, using K-S or p-norm functions [Yang and Chen, 1996], [Park, 1995], [Duysinx and Sigmund, 1998] [París et al., 2007], [Le et al., 2010], [París et al., 2010] - regional block aggregation

Other approaches [Amstutz and Novotny, 2010] - topological derivative, external penalty [Verbart et al., 2013] - artificial damage

Strategy 1: consider all local constraints, solve with "active" subsets

[Duysinx and Bendsøe, 1998], [Bruggi and Duysinx, 2012] [Pereira et al., 2004], [Fancello, 2006] - Augmented Lagrangian

Strategy 2: aggregate local constraints into global stress function, using K-S or p-norm functions

[Yang and Chen, 1996], [Park, 1995], [Duysinx and Sigmund, 1998] [París et al., 2007], [Le et al., 2010], [París et al., 2010] - regional block aggregation

Other approaches (Amstutz and Novotny, 2010] - topological derivative, external penalty [Verbart et al., 2013] - artificial damage

Strategy 1: consider all local constraints, solve with "active" subsets

[Duysinx and Bendsøe, 1998], [Bruggi and Duysinx, 2012] [Pereira et al., 2004], [Fancello, 2006] - Augmented Lagrangian

Strategy 2: aggregate local constraints into global stress function, using K-S or p-norm functions [Yang and Chen, 1996], [Park, 1995], [Duysinx and Sigmund, 1998] [París et al., 2007], [Le et al., 2010], [París et al., 2010] - regional block aggregation

Other approaches

[Amstutz and Novotny, 2010] - topological derivative, external penalty [Verbart et al., 2013] - artificial damage

Strategy 1: consider all local constraints, solve with "active" subsets

[Duysinx and Bendsøe, 1998], [Bruggi and Duysinx, 2012] [Pereira et al., 2004], [Fancello, 2006] - Augmented Lagrangian

Strategy 2: aggregate local constraints into global stress function, using K-S or p-norm functions [Yang and Chen, 1996], [Park, 1995], [Duysinx and Sigmund, 1998] [París et al., 2007], [Le et al., 2010], [París et al., 2010] - regional block

aggregation

Other approaches

[Amstutz and Novotny, 2010] - topological derivative, external penalty [Verbart et al., 2013] - artificial damage

[Amstutz and Novotny, 2010]

(c) Stress distribution ements with density $\rho < 1/2$.

Alternative approach based on elasto-plasticity (1/2)

Find a stress-constrained layout by modeling post-yielding response and driving the design towards "no-yield"

i.e.

Minimize plastic strains s.t. volume and compliance

Alternative approach based on elasto-plasticity (1/2)

Find a stress-constrained layout by modeling post-yielding response and driving the design towards "no-yield"

i.e.

Minimize plastic strains s.t. volume and compliance

(a) Step 1: 36 design iterations with p_E = $1.5, p_{\sigma_w} = 1.0$, filter radius r = 0.015 and hardening H = 0.001.

(c) Step 3: 51 further design iterations with $p_E = 2.5, p_{\sigma_w} = 2.0$, filter radius r = 0.015and hardening H = 0.001.

(b) Step 2: 35 further design iterations with $p_E = 2.0, p_{\sigma_u} = 1.5$, filter radius r = 0.015 and hardening H = 0.001.

(d) Step 4: 35 further design iterations with $p_{F} = 3.0, p_{\pi} = 2.5$, filter radius r = 0.010 and hardening H = 0.01.

[Amir, 2011]

Alternative approach based on elasto-plasticity (2/2)

Current work:

Minimize volume s.t. plastic strains (= 0) and end-compliance

Key aspects:

- Stress constraints are evaluated accurately at local material points;
- Formulation involves constraints on global quantities only;
- Nonlinear FE analysis is required.

Relative complexity: \uparrow analysis \downarrow optimization

Alternative approach based on elasto-plasticity (2/2)

Current work:

Minimize volume s.t. plastic strains (= 0) and end-compliance

Key aspects:

- Stress constraints are evaluated accurately at local material points;
- Formulation involves constraints on global quantities only;
- Nonlinear FE analysis is required.

Relative complexity: \uparrow analysis \downarrow optimization

Alternative approach based on elasto-plasticity (2/2)

Current work:

Minimize volume s.t. plastic strains (= 0) and end-compliance

Key aspects:

- Stress constraints are evaluated accurately at local material points;
- Formulation involves constraints on global quantities only;
- Nonlinear FE analysis is required.

Relative complexity: \uparrow analysis \downarrow optimization

Optimizing the energy absorbed by the structure

[Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999], [Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007], [Kato et al., 2015]

Crashworthiness design e.g. [Pedersen, 2004]

Concrete / steel layouts [Bogomonly and Amir, 2012]

Effective energy dissipation [Nakshatrala and Tortorelli, 2015]

Optimizing the energy absorbed by the structure [Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999], [Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007], [Kato et al., 2015]

Crashworthiness design

e.g. [Pedersen, 2004]

Concrete / **steel layouts** [Bogomonly and Amir, 2012]

Effective energy dissipation [Nakshatrala and Tortorelli, 2015]

Optimizing the energy absorbed by the structure [Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999], [Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007], [Kato et al., 2015]

Crashworthiness design e.g. [Pedersen, 2004]

Concrete / steel layouts [Bogomonly and Amir, 2012]

Effective energy dissipation [Nakshatrala and Tortorelli, 2015]

Optimizing the energy absorbed by the structure [Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999], [Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007], [Kato et al., 2015]

Crashworthiness design e.g. [Pedersen, 2004]

Concrete / steel layouts [Bogomonly and Amir, 2012]

Effective energy dissipation [Nakshatrala and Tortorelli, 2015]

Optimizing the energy absorbed by the structure [Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999], [Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007], [Kato et al., 2015]

Crashworthiness design e.g. [Pedersen, 2004]

Concrete / steel layouts [Bogomonly and Amir, 2012]

Effective energy dissipation [Nakshatrala and Tortorelli, 2015]

Optimizing the energy absorbed by the structure

[Yuge and Kikuchi, 1995], [Swan and Kosaka, 1997], [Yuge et al., 1999], [Maute et al., 1998], [Schwarz et al., 2001], [Yoon and Kim, 2007], [Kato et al., 2015]

Crashworthiness design

e.g. [Pedersen, 2004]

Concrete / steel layouts [Bogomonly and Amir, 2012]

Effective energy dissipation [Nakshatrala and Tortorelli, 2015]

Governing equations - elasto-plasticity

Rate-independent plasticity, J_2 flow theory:

von Mises yield criterion: $f(\sigma, \kappa) = \sqrt{3J_2} - \sigma_y(\kappa) \leq 0$ Bi-linear isotropic hardening: $\sigma_y(\kappa) = \sigma_y^0 + HE\kappa$ Associative flow rule: $\dot{\epsilon}^{pl} = \dot{\lambda} \frac{\partial f}{\partial \sigma}$ Evolution of internal hardening variable: $\dot{\kappa} = \sqrt{\frac{2}{3}} \|\dot{\epsilon}^{pl}\|_2$

Solution on a local level by well-known return mapping algorithm [Simo and Taylor, 1986] .

Nonlinear FEA

Recasting as a nonlinear, transient coupled problem [Michaleris et al., 1994] :

$${}^{n}\mathsf{R}({}^{n}\mathsf{u},{}^{n-1}\mathsf{u},{}^{n}\mathsf{v},{}^{n-1}\mathsf{v}) = 0$$
$${}^{n}\mathsf{H}({}^{n}\mathsf{u},{}^{n-1}\mathsf{u},{}^{n}\mathsf{v},{}^{n-1}\mathsf{v}) = 0$$

 ${}^{n}\mathbf{v} = \begin{bmatrix} {}^{n}\boldsymbol{\epsilon}{}^{p} \\ {}^{n}\boldsymbol{\kappa} \\ {}^{n}\boldsymbol{\sigma} \\ {}^{n}\boldsymbol{\lambda} \end{bmatrix}$

Global incremental force equilibrium, displacement control:

 ${}^{n}\mathbf{R}({}^{n}\mathbf{v},{}^{n}\theta) = {}^{n}\theta\widehat{\mathbf{f}}_{ext} - \int_{V}\mathbf{B}^{Tn}\boldsymbol{\sigma}dV$

Local incremental constitutive equations:

$${}^{n}\mathsf{H}_{1} = {}^{n-1}\epsilon^{pl} + ({}^{n}\lambda - {}^{n-1}\lambda)(\frac{\partial f}{\partial^{n}\sigma})^{T} - {}^{n}\epsilon^{pl} \quad \text{(associative flow)}$$

$${}^{n}\mathsf{H}_{2} = {}^{n-1}\kappa + ({}^{n}\lambda - {}^{n-1}\lambda)\sqrt{\frac{2}{3}(\frac{\partial f}{\partial^{n}\sigma})^{T}(\frac{\partial f}{\partial^{n}\sigma})} - {}^{n}\kappa \quad \text{(hardening variable)}$$

$${}^{n}\mathsf{H}_{3} = {}^{n-1}\sigma + \mathsf{D}\left[\mathsf{B}^{n}\mathsf{u} - \mathsf{B}^{n-1}\mathsf{u} - ({}^{n}\epsilon^{pl} - {}^{n-1}\epsilon^{pl})\right] - {}^{n}\sigma \quad \text{(elastic stress-strain)}$$

$${}^{n}\mathsf{H}_{4} = J_{2} - \frac{1}{3}(\sigma_{Y}(\kappa))^{2} \quad \text{(yield surface)}$$

Nonlinear FEA

Recasting as a nonlinear, transient coupled problem [Michaleris et al., 1994] :

$${}^{n}\mathbf{R}({}^{n}\mathbf{u},{}^{n-1}\mathbf{u},{}^{n}\mathbf{v},{}^{n-1}\mathbf{v}) = 0$$
$${}^{n}\mathbf{H}({}^{n}\mathbf{u},{}^{n-1}\mathbf{u},{}^{n}\mathbf{v},{}^{n-1}\mathbf{v}) = 0$$

$${}^{n}\mathbf{v} = \begin{bmatrix} {}^{n}\boldsymbol{\epsilon}^{pl} & \\ {}^{n}\boldsymbol{\kappa} & \\ {}^{n}\boldsymbol{\sigma} & \\ {}^{n}\boldsymbol{\lambda} \end{bmatrix}$$

Global incremental force equilibrium, displacement control:

$${}^{n}\mathbf{R}({}^{n}\mathbf{v},{}^{n}\theta) = {}^{n}\theta\widehat{\mathbf{f}}_{ext} - \int_{V}\mathbf{B}^{T\,n}\boldsymbol{\sigma}dV$$

Local incremental constitutive equations:

$${}^{n}\mathbf{H}_{1} = {}^{n-1}\epsilon^{pl} + ({}^{n}\lambda - {}^{n-1}\lambda)(\frac{\partial f}{\partial {}^{n}\sigma})^{T} - {}^{n}\epsilon^{pl} \quad \text{(associative flow)}$$

$${}^{n}\mathbf{H}_{2} = {}^{n-1}\kappa + ({}^{n}\lambda - {}^{n-1}\lambda)\sqrt{\frac{2}{3}(\frac{\partial f}{\partial {}^{n}\sigma})^{T}(\frac{\partial f}{\partial {}^{n}\sigma})} - {}^{n}\kappa \quad \text{(hardening variable)}$$

$${}^{n}\mathbf{H}_{3} = {}^{n-1}\sigma + \mathbf{D}\left[\mathbf{B}^{n}\mathbf{u} - \mathbf{B}^{n-1}\mathbf{u} - ({}^{n}\epsilon^{pl} - {}^{n-1}\epsilon^{pl})\right] - {}^{n}\sigma \quad \text{(elastic stress-strain)}$$

$${}^{n}\mathbf{H}_{4} = J_{2} - \frac{1}{3}(\sigma_{Y}(\kappa))^{2} \quad \text{(yield surface)}$$

Problem formulation

$$\begin{split} \min_{\mathbf{x}} f(\mathbf{x}) &= \frac{\sum_{i=1}^{N_{elem}} v_i \bar{x}_i}{N_{elem}} \quad \text{(volume fraction)} \\ \text{s.t.:} \quad g_1(\mathbf{x}) &= -^N \theta \widehat{\mathbf{f}}_{ext}^{TN} \mathbf{u} + g^* \leq 0 \quad \text{(end-compliance, disp. control)} \\ g_2(\mathbf{x}) &= \sum_{i=1}^{N_{elem}} \sum_{j=1}^{N_{gpts}} N \kappa_{i,j} \leq 0 \quad \text{(plastic strains)} \\ 0 &\leq x_i \leq 1, \quad i = 1, \dots, N_{dv} \\ \text{with:} \quad \mathbf{R}_n(^n \mathbf{v}, ^n \theta) = 0 \quad n = 1, \dots, N \\ \mathbf{H}_n(^n \mathbf{u}, ^{n-1} \mathbf{u}, ^n \mathbf{v}, ^{n-1} \mathbf{v}, \bar{\mathbf{x}}) = 0 \quad n = 1, \dots, N \end{split}$$

Remarks:

Physical density x̄ from density filter and Heaviside projection [Bruns and Tortorelli, 2001, Bourdin, 2001, Guest et al., 2004, Xu et al., 2010].
Solution obtained by MMA [Svanberg, 1987].

Design parameterization Modified SIMP for stiffness and yield stress [Bendsøe, 1989, Sigmund and Torquato, 1997] :

$$E(\bar{x}_i) = E_{min} + (E_{max} - E_{min})\bar{x}_i^{P_E}$$
$$\sigma_y^0(\bar{x}_i) = \sigma_{y,min}^0 + (\sigma_{y,max}^0 - \sigma_{y,min}^0)\bar{x}_i^{P_{\sigma_y}}$$

Adjoint sensitivity analysis

Backwards-incremental adjoint procedure [Michaleris et al., 1994] :

Augmented response functional

$$\widehat{g}(\mathbf{u},\mathbf{v},\theta,\bar{\mathbf{x}}) = g({}^{N}\mathbf{u},{}^{N}\mathbf{v},{}^{N}\theta,\bar{\mathbf{x}}) - \sum_{n=1}^{N}{}^{n}\boldsymbol{\lambda}^{Tn}\mathbf{R}({}^{n}\mathbf{v},{}^{n}\theta) - \sum_{n=1}^{N}{}^{n}\boldsymbol{\gamma}^{Tn}\mathbf{H}({}^{n}\mathbf{u},{}^{n-1}\mathbf{u},{}^{n}\mathbf{v},{}^{n-1}\mathbf{v},\bar{\mathbf{x}})$$

Global adjoint equations for ${}^n \lambda$

$$\begin{bmatrix} -\frac{\partial (^{n}\mathbf{R})}{\partial (^{n}\mathbf{v})} \frac{\partial (^{n}\mathbf{H})}{\partial (^{n}\mathbf{v})}^{-1} \frac{\partial (^{n}\mathbf{H})}{\partial (^{n}\mathbf{u})} \end{bmatrix}^{T} {}^{n}\boldsymbol{\lambda} = \frac{\partial g}{\partial (^{n}\mathbf{u})}^{T} - \begin{bmatrix} \frac{\partial g}{\partial (^{n}\mathbf{v})} \frac{\partial (^{n}\mathbf{H})}{\partial (^{n}\mathbf{v})}^{-1} \frac{\partial (^{n}\mathbf{H})}{\partial (^{n}\mathbf{u})} \end{bmatrix}^{T} \\ - \begin{bmatrix} \frac{\partial (^{n+1}\mathbf{H})}{\partial (^{n}\mathbf{u})} - \frac{\partial (^{n+1}\mathbf{H})}{\partial (^{n}\mathbf{v})} \frac{\partial (^{n}\mathbf{H})}{\partial (^{n}\mathbf{v})}^{-1} \frac{\partial (^{n}\mathbf{H})}{\partial (^{n}\mathbf{u})} \end{bmatrix}^{T} {}^{n+1}\boldsymbol{\gamma} \\ \frac{\partial (^{n}\mathbf{R})}{\partial (^{n}\boldsymbol{\theta})}^{T} {}^{n}\boldsymbol{\lambda} = \frac{\partial g}{\partial (^{n}\boldsymbol{\theta})}$$

Local adjoint equations for $^{n}\gamma$

$$\frac{\partial \binom{n}{\mathbf{H}}}{\partial \binom{n}{\mathbf{v}}}^{T}{}_{n}\boldsymbol{\gamma} = -\frac{\partial \binom{n}{\mathbf{R}}}{\partial \binom{n}{\mathbf{v}}}^{T}{}_{n}\boldsymbol{\lambda} - \frac{\partial \binom{n+1}{\mathbf{H}}}{\partial \binom{n}{\mathbf{v}}}^{T}{}_{n+1}\boldsymbol{\gamma} + \frac{\partial g}{\partial \binom{n}{\mathbf{v}}}^{T}$$

Explicit derivatives w.r.t. design variables

$$\frac{\partial \widehat{g}_{exp}}{\partial \overline{x}_i} = \frac{\partial g}{\partial \overline{x}_i} - \sum_{n=1}^N {}^n \gamma^T \frac{\partial^n \mathbf{H}}{\partial \overline{x}_i}$$

Example: L-bracket (1/3)

Solution parameters:

- nelx = nely = 160, filter radius = 0.025
- $\delta = 0.01$
- $E_{min} = 0.001$, $E_{max} = 1000$, $\sigma_{y,min}^0 = 0$, $\sigma_{y,max}^0 = 1.8$
- Continuation on p_E , p_{σ_y} , β

Example: L-bracket (2/3)

Example: L-bracket (3/3)

In the optimized design:

- Reentrant corner is circumvented;
- Compliance constraint is satisfied;
- Maximum stress is the allowable stress.

Summary and conclusions

- Stress constraints can be achieved via elasto-plastic modeling by minimizing or constraining the sum of plastic strains;
- Stress violations are captured accurately without local constraints;
- Computational cost **dominated by NLFEA** can be competitive in large scale;
- Oscillatory behavior still much room for improvements.

Work in progress - oscillations

Stress

Sensitivity of stress

Strain energy vs. strain

Sensitivity of strain energy vs. strain

Strain energy vs. stress

Sensitivity of strain energy vs. stress

pE = 3, pS = 2.5, H = 0.01

References I

Amir, O. (2011).

Efficient Reanalysis Procedures in Structural Topology Optimization. PhD thesis, Technical University of Denmark.

Amstutz, S. and Novotny, A. A. (2010).

Topological optimization of structures subject to von mises stress constraints. Structural and Multidisciplinary Optimization, 41(3):407–420.

Bendsøe, M. P. (1989).

Optimal shape design as a material distribution problem. *Structural Optimization*, 1:193–202.

Bogomonly, M. and Amir, O. (2012).

Conceptual design of reinforced concrete structures using topology optimization with elasto-plastic material modeling.

International Journal for Numerical Methods in Engineering, 90:15781597. Published online.

Bourdin, B. (2001).

Filters in topology optimization. International Journal for Numerical Methods in Engineering, 50:2143–2158.

Bruggi, M. and Duysinx, P. (2012).

Topology optimization for minimum weight with compliance and stress constraints. *Structural and Multidisciplinary Optimization*, 46(3):369–384.

References II

Bruns, T. E. and Tortorelli, D. A. (2001).

Topology optimization of non-linear elastic structures and compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 190:3443–3459.

Duysinx, P. and Bendsøe, M. P. (1998).

Topology optimization of continuum structures with local stress constraints. International Journal for Numerical Methods in Engineering, 43:1453–1478.

Duysinx, P. and Sigmund, O. (1998).

New developments in handling stress constraints in optimal material distribution. In Proceedings of 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA, Saint Louis, Missouri, AIAA Paper, pages 98–4906.

Fancello, E. (2006).

Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions.

Structural and Multidisciplinary Optimization, 32(3):229-240.

Guest, J. K., Prévost, J. H., and Belytschko, T. (2004).

Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61:238–254.

James, K. A. and Waisman, H. (2014).

Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. *Computer Methods in Applied Mechanics and Engineering*, 268:614–631.

References III

Kato, J., Hoshiba, H., Takase, S., Terada, K., and Kyoya, T. (2015). Analytical sensitivity in topology optimization for elastoplastic composites. *Structural and Multidisciplinary Optimization*, pages 1–20.

Le, C., Norato, J., Bruns, T., Ha, C., and Tortorelli, D. (2010).

Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization, 41:605–620.

Maute, K., Schwarz, S., and Ramm, E. (1998).

Adaptive topology optimization of elastoplastic structures. *Structural Optimization*, 15(2):81–91.

Michaleris, P., Tortorelli, D. A., and Vidal, C. A. (1994).

Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity.

International Journal for Numerical Methods in Engineering, 37:2471–2499.

Nakshatrala, P. and Tortorelli, D. (2015).

Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Computer Methods in Applied Mechanics and Engineering.

París, J., Navarrina, F., Colominas, I., and Casteleiro, M. (2007).

Block aggregation of stress constraints in topology optimization of structures. In Hernández, S. and Brebbia, C. A., editors, *Computer Aided Optimum Design of Structures X*.

References IV

París, J., Navarrina, F., Colominas, I., and Casteleiro, M. (2010).

Block aggregation of stress constraints in topology optimization of structures. Advances in Engineering Software, 41(3):433–441.

Park, Y. K. (1995).

Extensions of optimal layout design using the homogenization method. PhD thesis, University of Michigan, Ann Arbor.

Pedersen, C. B. (2004).

Crashworthiness design of transient frame structures using topology optimization. Computer Methods in Applied Mechanics and Engineering, 193(6):653–678.

Pereira, J. T., Fancello, E. A., and Barcellos, C. S. (2004).

Topology optimization of continuum structures with material failure constraints. *Structural and Multidisciplinary Optimization*, 26(1-2):50–66.

Schwarz, S., Maute, K., and Ramm, E. (2001).

Topology and shape optimization for elastoplastic structural response. Computer Methods in Applied Mechanics and Engineering, 190:2135–2155.

Sigmund, O. and Torquato, S. (1997).

Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6):1037–1067.

Simo, J. and Taylor, R. (1986).

A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering, 22:649–670.

References V

Svanberg, K. (1987).

The method of moving asymptotes - a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24:359–373.

Swan, C. and Kosaka, I. (1997).

Voigt-reuss topology optimization for structures with nonlinear material behaviors. International Journal for Numerical Methods in Engineering, 40(20):3785–3814.

Verbart, A., Langelaar, M., and van Keulen, F. (2013).

A new approach for stress-based topology optimization: Internal stress penalization. In 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida, USA.

Xu, S., Cai, Y., and Cheng, G. (2010).

Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 41(4):495–505.

Yang, R. and Chen, C. (1996).

Stress-based topology optimization. Structural Optimization, 12(2-3):98-105.

Yoon, G. H. and Kim, Y. Y. (2007).

Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. International journal for numerical methods in engineering, 69(10):2196–2218.

Optimization of 2-d structures subjected to nonlinear deformations using the homogenization method. *Structural optimization*, 17(4):286–299.

References VI

Yuge, K. and Kikuchi, N. (1995).

Optimization of a frame structure subjected to a plastic deformation. *Structural Optimization*, 10:197–208.