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Earthquakes

Devastating natural events which threaten lives, destroy property,
and disrupt life-sustaining services and societal functions.

Gorkha earthquake, 2015 (Nepal). Killed ∼= 8, 800, injured ∼= 23, 000.
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Prevention

Conventional seismic design and retrofitting

New buildings
energy dissipation ≡ plastic hinges

damage ≡ costs

Existing buildings
costly & disruption of architectural
features

Seismic protection systems

⇒ Fluid viscous dampers

F = cd u̇
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Seismic retrofitting with fluid viscous dampers

Why optimization?
I Optimal dampers’ distribution;
I Optimal dampers’ size;
I Limit the variety of size-groups;
I Minimum cost & best performance.
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Optimization approaches

Continuous approaches

[Gluck et al., 1996]

[Takewaki, 1997]

[Lavan and Levy, 2006]

and others...

I Optimal distributions and sizes of dampers;
I Computational efficient;
I Effective for large scale problems;
I Wide variety of damping coefficients.

Discrete approaches

[Zhang and Soong, 1992]

[Dargush and Sant, 2005]

[Kanno, 2013]

and others...

I Practical distributions and sizes of dampers;
I Computationally robust;
I Available dampers’ sizes predefined;
I Computationally expensive for large scale

problems.
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Mixed-integer approaches

Damper placement, sizing and selection, discrete and continuous vari-
ables.

[Lavan and Amir, 2014]: minimum dampers’ cost, inter-story drift constrained,
dampers’ distribution, selection, and sizing are variables of the problem, SLP with
material interpolation functions;

[Pollini et al., 2014]: minimum realistic retrofitting cost, inter-story drift constrained,
dampers’ distribution, selection, and sizing are variables of the problem, GA;

Observations
I Most realistic description of the problem;
I Practical design solutions;
I No aspect of the design is pre-defined;
I Gradient-based: computationally efficient for large-scale

problems, but not user-friendly;
I Zero order: computationally expensive for large-scale problems,

but more user-friendly.
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Goals of the current study

Approach for minimum-cost distributions of fluid viscous dampers
combining concepts from continuum topology and discrete ma-
terial optimization.

I Realistic retrofitting cost function;
I Formulation with discrete (topology and size selection) and

continuous (sizes) variables;
I Final practical solutions with a reasonable computational

effort.
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Problem formulation

min COST - retrofitting

s.t. di ≤ d̄ - performance index

with: Mü(t) + [C + Cd(c̃d)]u̇(t) + Ku(t) = −Meag (t)

u(0) = 0, u̇(0) = 0

Variables:
x1, x2 discrete; y1, y2 continuous

I x1(1) = 0 no damper;
I x1(1) = 1, x2(1) = 0, cd(1) = y1c̄d ;
I x1(1) = 1, x2(1) = 1, cd(1) = y2c̄d .

Cd(1) Cd(2)

Cd(3) Cd(4)
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New realistic cost function

1. Cost due to the number of bays in which dampers are installed:

Jbays = xT1 Cmont

Cmont = D(Cm1)
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2. Cost of the dampers – f (peak force & stroke):

Jdampers = c̄dxT1 (y11 + (y2 − y1)x2)

3. Cost due to the prototype testing – force-velocity behavior:

Jsizes = Ctype

[
sgn(xT1 x2) + sgn(xT1 (1− x2))

]
⇒ J = Jbays + Jdampers + Jsizes
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Mixed-integer formulation

min
x1,x2,y

J (cost)

s. t.: dc,i = max
t

(|di (t)/dall ,i )|) ≤ 1 ∀t, ∀i = 1, . . . ,Ndrifts (drifts)

x1,k = {0, 1} k = 1, . . . , 2Nd (damper existence)

x2,k = {0, 1} k = 1, . . . , 2Nd (size-group association)

0 ≤ yL1 ≤ y1 ≤ yU1 ≤ yL2 (1st size-group)

yU1 ≤ yL2 ≤ y2 ≤ yU2 ≤ 1 (2nd size-group)

with: Mü(t) + [C + Cd(c̃d)]u̇(t) + Ku(t) = −Meag (t) ∀t, ∀ag (t) ∈ E

u(0) = 0, u̇(0) = 0

[Pollini et al., 2014]



Nicolò Pollini 11

Continuous formulation

min
x1,x2,y

J (cost)

s. t.: dc,i = max
t

(|di (t)/dall ,i )|) ≤ 1 ∀t,∀i = 1, . . . ,Ndrifts (drifts)

0 ≤ x1,k ≤ 1 k = 1, . . . , 2Nd (existence)

0 ≤ x2,k ≤ 1 k = 1, . . . , 2Nd (size-group association)

0 ≤ yL1 ≤ y1 ≤ yU1 ≤ yL2 (1st size-group)

yU1 ≤ yL2 ≤ y2 ≤ yU2 ≤ 1 (2nd size-group)

with: Mü(t) + [C + Cd(c̃d)]u̇(t) + Ku(t) = −Meag (t)∀t, ∀ag (t) ∈ E

u(0) = 0, u̇(0) = 0
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Ingredients

Material interpolation techniques (RAMP, [Stolpe and Svanberg, 2001]) - discrete solutions:

c̃d,j = c̄d
x1,j

1+p(1−x1,j )

(
y1 + (y2 − y1)

x2,j
1+p(1−x2,j )

)

Continuously differentiable functions - gradient-based algorithm:

Jsizes = Ctype

[
sgn (xT1 x2) + sgn (xT1 (1− x2))

]
⇒

dc,i = maxt (
∣∣di (t)/dall,i )
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Constraint management - computational cost:

MMA: d̃c,active =
{
d̃c,i |d̃c,i ≥ 0.95

}
CPM: d̃c,max = 1TDq+1d̃c (tf )1

1TDq d̃c (tf )1
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Notes regarding the algorithm

I Gradient-based algorithm:
- Sequential convex programming (Method of Moving

Asymptotes)
- Sequential linear programming (Cutting Planes Method)

I Gradients of the constraints from an adjoint sensitivity analysis
(additional time-history analyses with final conditions)

I Algorithm sensitive to:
- Continuation scheme
- Constraint aggregation/management

I Not yet user-friendly and computationally robust.
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Simple case
1 damper size, J = Jdampers , LA02
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DATA OF THE PROBLEM
c̄d = 3000[kNs/m]
dall = 0.009[m]

RESULTS
cd1 = 1102.7 [kNs/m]
cd2 = 1102.7 [kNs/m]
J = 2203.69 [kNs/m]
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Simple case
Convergence to a discrete solution
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Example 1
Eight-story asymmetric frame
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Example 1 - results
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J̃, J dc,max/dall c̄d1 c̄d2 Func. evaluations
[kNs/m] [kNs/m] [kNs/m]

MMA 334,656 1.0055 (0.55%) 15,933 31,735 2923 ≈ 103.465

CPM 334,380 1.0072 (0.72%) 15,942 31,638 2 · 254 ≈ 102.706

GA 337,682 1 (0.00%) 15,906 32,490 20 · 1000 · 110≈ 106.342
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Conclusions

I Material interpolation techniques for optimal distribution
and sizing of fluid viscous dampers;

I Discrete and practical solutions from a continuum
formulation;

I Reasonable computational cost.
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Thank you!

Further reading:

- Pollini N., Lavan O., and Amir O. (2014). Towards realistic minimum-cost
seismic retrofitting of 3D irregular frames using viscous dampers of a limited
number of size groups. 2ECEES, Istanbul, Turkey.

- Pollini N., Lavan O., and Amir O. (Submitted). Towards realistic minimum-cost
optimization of viscous dampers for seismic retrofitting.
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