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Abstract A new approach for generating stress-
constrained topological designs in continua is pre-
sented. The main novelty is in the use of elasto-
plastic modeling and in optimizing the design such
that it will exhibit a linear-elastic response. This
is achieved by imposing a single global constraint
on the total sum of equivalent plastic strains, pro-
viding accurate control over all local stress viola-
tions. The single constraint essentially replaces a
large number of local stress constraints or an ap-
proximate aggregation of them – two common ap-
proaches in the literature. A classical rate-independent
plasticity model is utilized, for which analytical
adjoint sensitivity analysis is derived and verified.
Several examples demonstrate the capability of the
computational procedure to generate designs that
challenge results from the literature, in terms of the
obtained stiffness-strength-weight trade-offs. A full
elasto-plastic analysis of the optimized designs shows
that prior to the initial yielding, these designs can
sustain significantly higher loads than minimum
compliance topological layouts, with only a minor
compromise on stiffness.
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1 Introduction

Topology optimization of continua is a computa-
tional method aimed at optimizing the distribution
of one or several materials in a given design do-
main. The purpose is typically to achieve a minimum-
weight structural design with a constraint on dis-
placements, or vice-versa: minimize compliance
(i.e. maximize stiffness) using a given amount of
available material. For extensive reviews see for
example Eschenauer and Olhoff (2001), Bendsøe
and Sigmund (2003) and recently Sigmund and
Maute (2013) and Deaton and Grandhi (2014). One
of the most challenging aspects in developing com-
putational topology optimization procedures is the
consideration of stress constraints. From an engi-
neering standpoint, limiting the stresses of an opti-
mized design is a fundamental requirement: load-
bearing components are typically designed to re-
main in the linear-elastic regime throughout their
service life, meaning that the yield stress should
not be exceeded. In this article, a new approach to
satisfying stress constraints is proposed. The cen-
tral idea is to consider the nonlinear, inelastic ma-
terial behavior and via optimization to drive the
design towards a linear-elastic response.
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The incorporation of stress constraints imposes
several challenges. First and foremost is the local
nature of stress constraints. Most applications of
topology optimization involve an objective func-
tional of global nature and only a few global con-
straints that control volume, weight, displacements
or compliance. If stress constraints are incorpo-
rated it is considerably more difficult to tackle the
corresponding optimization problem. In principle,
stress constraints should be imposed on every ma-
terial point in the design domain, meaning that the
number of constraints is comparable to the number
of design variables – both related to the resolution
of the underlying finite element mesh. Therefore it
is expected that the solution time will be signifi-
cantly longer than for standard topology optimiza-
tion problems, and the vulnerability of numerical
algorithms to arrive at local minima will be ag-
gravated. Review of the existing literature high-
lights two dominating strategies for formulating
and solving the optimization problem: 1) All lo-
cal stress constraints are considered in the problem
formulation, whereas in the actual solution only a
subset of “active” constraints are included; and 2)
Local stress constraints are aggregated into a sin-
gle or into a few global constraints.

The former strategy was implemented in one
of the earliest publications on stress-constrained
topology optimization of continua by Duysinx and
Bendsøe (1998). Throughout most of the optimiza-
tion process, roughly one third of the local con-
straints are considered for sensitivity analysis and
optimization. In the final optimization steps, 180
local constraints (corresponding to 15% of the de-
sign variables) are actually active. Local constraints
were also considered by Bruggi and Venini (2008)
and similar tendencies are reported in a later, de-
tailed study of various problem formulations with
local stress constraints (Bruggi and Duysinx 2012).
Therefore the efficiency of imposing local constraints
in large-scale problems is questionable. A simi-
lar problem formulation but with a different nu-
merical treatment was presented by Pereira et al
(2004). All stress constraints are considered but
an Augmented Lagrangian technique is utilized for
solving the optimization problem, facilitating a re-
duction in computational effort invested in sensi-

tivity analysis. Results appear promising as they
exhibit layouts that circumvent regions with po-
tentially high stress concentrations. On the other
hand, the authors report computational times of
up to 10 times higher than for standard minimum
compliance formulations. The Augmented Lagrangian
approach was followed also by Fancello (2006)
who presented layouts that avoid stress concen-
trations. The author reported difficulties regarding
the numerical implementation and the number of
function evaluations indicates that the procedure
may not be suitable for large-scale applications.

The second, widely adopted strategy for deal-
ing with the large number of stress constraints in-
volves various forms of constraint aggregation, i.e.
collecting the constraints into a global stress func-
tion. In an early study, Yang and Chen (1996) ex-
amine the use of both Kreisselmeier-Steinhauser
(KS) functions and p-norm functions (referring to
Park (1995)). Their problem formulations aim at
minimizing either the global stress or a weighted
combination of global stress and compliance, sub-
ject to a volume constraint. A step further in the
direction of utilizing global stress measures was
proposed by Duysinx and Sigmund (1998). Two
global stress functions were suggested, namely the
p-mean and the p-norm. It was shown that for any
given p, the maximum local stress is bounded from
above by the p-norm and from below by the p-
mean. Due to ill-conditioning and oscillatory be-
havior, the maximum value of p is limited to 4
which is not large enough for identifying the ac-
tual peak stress.

Several recent studies demonstrate that constraint
aggregation can in fact lead to satisfactory results
– in particular for the classical L-bracket case. Le
et al (2010) provide an extensive critical review
and propose regional stress measures where local
stress constraints are grouped in interlacing regions
according to their stress level. A similar approach
of “block aggregation” was suggested also by Parı́s
et al (2007, 2010). The regional stress measures
are based on p-norms and a normalization with re-
spect to the actual maximum stress is proposed in
order to improve the approximation of the maxi-
mum stress. In the optimization of the L-bracket,
a layout that avoids the re-entrant corner is gener-
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ated, demonstrating the potential of the approach.
On the other hand, the numerical implementation
suffers from several drawbacks: First, the normal-
ization is non-differentiable as it changes discon-
tinuously between optimization cycles; second, also
the regional constraints can change every optimiza-
tion cycle according to the sorting of local stresses,
thus introducing some inconsistency in the opti-
mization process; and third, it is shown that in-
creasing the number of regions does not always
improve the optimized design as one might expect
due to the tighter control over local stresses.

Level-set methods combined with topological
derivatives have also succeeded in generating de-
signs free of stress concentrations. Allaire and Jouve
(2008) minimize an integral measure of a power-
law penalty of stress. This approach is shown to
provide smooth designs in re-entrant corners but
there is no direct control over the actual stress nor
the compliance. Another set of positive results was
presented by Amstutz and Novotny (2010). The
large number of stress constraints is replaced by an
external penalty functional that mimics the point-
wise constraint. The layouts avoid stress concen-
trations at re-entrant corners. Only slight violations
of the stress constraints occur in the final designs,
e.g. 1%-2% above the target stress. The main draw-
backs of this approach are the reliance on penal-
ization parameters that may be problem-specific,
and the lack of direct control over local stresses.
The significance of the latter depends on the de-
gree of localization of high stresses – which may
differ considerably from one problem to another.

An interesting novel approach was proposed
recently by Verbart et al (2016). Instead of impos-
ing a large number of constraints, material is pe-
nalized if the stress exceeds the allowable stress.
Numerical results demonstrate the potential of this
efficient approach. However, because penalization
is utilized it is hard to satisfy the admissible stress
criterion accurately. Furthermore, the penalized ma-
terial law is somewhat artificial so it may be diffi-
cult to generalize the method.

Another major difficulty in computational stress-
constrained topology optimization is the so-called
“singularity” problem, originally demonstrated in
the context of truss topological design. It was shown

that the optimal topology might correspond to a
singular point in the design space, therefore mak-
ing it difficult or in some cases impossible to ar-
rive at the true optimum by numerical search algo-
rithms (Sved and Ginos 1968; Kirsch 1990; Cheng
and Jiang 1992). Such singular points are encoun-
tered in cases where removal of a certain truss bar
(or a material point in the continuum case) results
in a feasible design space with better optimum due
to the removal of the corresponding constraint. This
article does not target the difficulties related to the
singularity phenomenon. In fact, an appropriate re-
laxation scheme is an essential ingredient in the
suggested computational approach. Possibly the most
widespread remedy for dealing with the singular-
ity problem is the so-called ε-relaxation (Cheng
and Guo 1997), where the actual stress constraints
are relaxed so that the resulting feasible domain
does not possess degenerate branches. A similar
relaxation scheme involving smooth envelope func-
tions was suggested in the context of local buck-
ling constraints by Rozvany (1996). The ε-relaxation
approach was first integrated into continuum topol-
ogy optimization by Duysinx and Bendsøe (1998)
and by Duysinx and Sigmund (1998), who imple-
mented a continuation scheme for gradually re-
ducing ε hence approaching the actual constraints.
The ε-relaxation approach was successfully applied
to various test cases in later studies (Pereira et al
2004; Fancello 2006; Le et al 2010). An alternative
relaxation for avoiding the singularity phenomenon
was introduced by Bruggi (2008). In the SIMP rule,
the penalization power q for the yield stress was
chosen to be lower than the penalization power p
for the stiffness. It is noted that separate penal-
ization exponents for stiffness and for yield stress
have been suggested much earlier in an extension
of SIMP-based topology optimization to elasto-plastic
structures (Maute et al 1998). In practice, the so-
called qp-relaxation appears to provide similar re-
sults to those of the ε-relaxation. Both are highly
dependent on the continuation scheme and it was
shown that a sequence of solutions to the relaxed
problem may not converge to the global optimum
(Stolpe and Svanberg 2001). Despite these short-
comings it seems necessary to apply some form of
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continuous relaxation in order to arrive at practical
structural designs that satisfy stress requirements.

The central idea of the approach proposed in
this article is to optimize the inelastic structural
response for the particular purpose of satisfying
stress constraints in linear elasticity. Up to date,
applications of topology optimization that consid-
ered inelastic response were concerned with ob-
jectives other than the one pursued herein. Mate-
rial nonlinearities in topology optimization were
initially considered by Yuge and Kikuchi (1995).
Layout optimization of frame structures undergo-
ing plastic deformation was presented, based on
homogenization of porous material. Swan and Kosaka
(1997) suggested a framework for topology op-
timization of structures with material nonlinear-
ity based on Voigt and Reuss mixing rules. The
SIMP (Solid Isotropic Material with Penalization)
interpolation scheme, originally proposed for lin-
ear elastic material (Bendsøe 1989), was extended
for elasto-plastic behavior by Maute et al (1998).
Although several other articles on the subject were
published over the last two decades, topology opti-
mization involving elasto-plasticity is still not well
established. One difficulty lies in obtaining accu-
rate design sensitivities. In some cases, several deriva-
tive terms are neglected (Maute et al 1998; Schwarz
et al 2001). Apparently this has a minor effect on
the outcome of the optimization but in general these
terms are not negligible. Moreover, when compar-
ing analytical design sensitivities to finite differ-
ence calculations, errors in the order of 10−2 are
observed (Swan and Kosaka 1997; Yoon and Kim
2007). Recent studies have incorporated analytical
adjoint sensitivity analysis for rate-independent elasto-
plasticity, based on the framework by Michaleris
et al (1994). Accurate sensitivities have been re-
ported for problems involving reinforced concrete
design (Bogomolny and Amir 2012) and effective
energy management under dynamic loading (Naksha-
trala and Tortorelli 2015). Another analytical sen-
sitivity analysis scheme for topology optimization
of elasto-plastic structures was recently presented
by Kato et al (2015). Highly accurate derivatives
are obtained, however the formulation is limited to
cases in which the load is applied only to the nodes
whose displacements are controlled. Adjoint sen-

sitivity analysis has been applied also for topology
optimization with viscoelastic material (James and
Waisman 2015); viscoplastic micro-heterogeneous
materials in a multiscale approach (Fritzen et al
2015); and continuum damage models (Amir and
Sigmund 2013; Amir 2013; James and Waisman
2014). The latter study in fact targeted a similar
goal as in this article – mitigating failure, i.e. im-
posing stress constraints – but was based on a dif-
ferent constitutive model and on a different prob-
lem formulation which involved constraint aggre-
gation.

As mentioned in the beginning of the introduc-
tion, the proposed approach relies on modeling the
inelastic behavior and driving the design towards
a linear-elastic response. This is achieved by con-
straining the total sum of equivalent plastic strains.
A single global constraint is added to the stan-
dard stiffness vs. volume problem, inherently pro-
viding accurate control over all local stress viola-
tions. Consequently stress limits can be implicitly
satisfied, without imposing a large number of lo-
cal constraints. The corresponding computational
procedure can alleviate one of the major obstacles
in stress-constrained topology optimization – the
need to solve a nonlinear, non-convex optimization
problem with a large number of design variables
and an equally large number of constraints.

The remainder of the article is organized as
follows. In Section 2 we briefly review the elasto-
plastic material model and the nonlinear finite ele-
ment analysis formulation. The topology optimiza-
tion problem formulation and the design parametriza-
tion are then introduced in Section 3, followed by
a derivation and verification of the adjoint sensitiv-
ity analysis in Section 4. Several examples demon-
strate the applicability of the proposed approach in
Section 5. Finally, a discussion of the results and
of necessary future investigations is given in Sec-
tion 6.

2 Elasto-plastic model and finite element
analysis

In this section we briefly review the material model
and the subsequent nonlinear finite element analy-
sis. The purpose is to provide the necessary back-
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ground for the optimization problem formulation
presented in Section 3, which involves state vari-
ables related to the elasto-plastic material model,
as well as for the adjoint sensitivity analysis, pre-
sented in Section 4.

2.1 Classical rate-independent plasticity

The derivation of the governing equations herein
follows the textbooks by Simo and Hughes (2006)
and by Zienkiewicz and Taylor (2000). The model
is essentially composed of the following assump-
tions and rules: elastic stress-strain relationships; a
yield condition, defining the elastic domain; a flow
rule and hardening law; Kuhn-Tucker complemen-
tarity conditions; and a consistency condition. We
first assume that the total strain tensor ε can be
split into its elastic and plastic parts, εel and ε pl

respectively,

ε = ε
el + ε

pl . (1)

Furthermore, we relate the stress tensor σ to the
elastic strains using the elastic constitutive tensor
D,

σ = Dε
el . (2)

The yield criterion f is a function that defines the
admissible stress states

f (σ ,q)≤ 0 (3)

where q are internal variables related to the plastic
strains and to the hardening parameters. The elas-
tic domain is defined by the interior of the yield
criterion where f < 0; the yield surface is defined
by f = 0; and the stress state corresponding to
f > 0 is considered non-admissible.

The irreversible plastic flow is governed by the
evolution of plastic strains and internal variables

ε̇
pl = λ̇r(σ ,q) (4)

q̇ = −λ̇h(σ ,q) (5)

where r and h are functions defining the direc-
tion of plastic flow and the hardening of the ma-
terial. The parameter λ̇ is typically called the con-
sistency parameter or plastic multiplier. Together

with the yield criterion, λ̇ must satisfy the Kuhn-
Tucker complementarity conditions

λ̇ ≥ 0

f (σ ,q) ≤ 0

λ̇ f (σ ,q) = 0 (6)

as well as the consistency requirement

λ̇ ḟ (σ ,q) = 0. (7)

The consistency requirement means that during plas-
tic loading, the stress state must remain on the yield
surface, meaning ḟ = 0 if λ̇ > 0.

A widely accepted model of rate-independent
plasticity in metals is usually known as J2 flow
theory or simply J2-plasticity. It is based on the
von Mises yield criterion (von Mises 1928) that re-
lates the yielding of the material to the deviatoric
stresses, measured by the second deviatoric stress
invariant J2. The model is hereby presented as a
particular case of rate-independent plasticity.

The yield criterion is the von Mises yield func-
tion expressed as

f (σ ,κ) =
√

3J2−σy(κ)≤ 0 (8)

where the expression
√

3J2 is usually named the
von Mises stress or equivalent stress. σy is the yield
stress in uniaxial tension, which depends on a sin-
gle internal parameter κ according to an isotropic
hardening function. Kinematic hardening is not con-
sidered in the current work. A popular choice for
the hardening rule is the bi-linear function

σy(κ) = σ
0
y +HEκ (9)

where σ0
y is the initial yield stress, H is a scalar

(usually in the order of 10−2) and E is Young’s
modulus. An associative flow rule is assumed, mean-
ing that the flow of plastic strains is in a direction
normal to the yield surface

ε̇
pl = λ̇

∂ f
∂σ

. (10)

Finally, the internal variable governing the hard-
ening is the equivalent plastic strain, evolving ac-
cording to the rule

κ̇ =

√
2
3

∥∥∥ε̇
pl
∥∥∥

2
. (11)



6 Oded Amir

The factor
√

2
3 is introduced so that for the particu-

lar one-dimensional case (involving uniaxial plas-
tic deformation), the obvious relation will be ob-
tained, i.e. κ̇ = ˙ε pl .

2.2 Finite element implementation

For finite element analysis, the process of rate-independent
plasticity is conveniently represented as a flow evolv-
ing in time, where each time step corresponds to an
increment of load or displacement. In the current
work, a standard Newton-Raphson incremental-iterative
scheme with displacement control is employed. For
the purpose of sensitivity analysis in optimal de-
sign, the finite element equations are cast into the
framework for transient, coupled and nonlinear sys-
tems suggested by Michaleris et al (1994).

In the coupled approach, for every ‘time’ in-
crement n in the transient analysis, we determine
the unknowns un, vn and θn that satisfy the resid-
ual equations

Rn(un,un−1,vn,vn−1,θn) = 0 (12)

Hn(un,un−1,vn,vn−1) = 0 (13)

where un is the displacements vector, θn is the load
factor and vn are the internal variables – all corre-
sponding to the time tn. Rn = 0 is satisfied at the
global level and Hn = 0 is satisfied at each Gauss
integration point. The transient, coupled and non-
linear system of equations is uncoupled by treat-
ing the response v as a function of the response u.
When solving the residual equations for the n-th
increment, the responses un−1 and vn−1 are known
from the previous converged increment. The inde-
pendent response un is found by an iterative prediction-
correction procedure in the global level, while for
each iterative step the dependent response vn(un)

is found by an inner iterative loop. The responses
un and its dependant vn are corrected until Eqs. (12)
and (13) are satisfied to sufficient accuracy. This
procedure is repeated for all N increments.

Neglecting body forces, Rn is defined in the
current study as the difference between external
and internal forces and depends explicitly on vn
and θn only

Rn(vn,θn) = θn f̂−
∫

V
BT

σndV (14)

where f̂ is a constant reference load vector with
non-zero entries only at loaded degrees of freedom
and B is the standard strain-displacement matrix in
the context of finite element procedures. For the
particular material model used in this study, the
vector vn is given by

vn =


ε

pl
n

κn
σn
λn

 . (15)

For solving the local nonlinear constitutive prob-
lem, an implicit backward-Euler scheme is employed.
The central feature of this scheme is the introduc-
tion of a trial elastic state. For any given incremen-
tal displacement field, it is first assumed that there
is no plastic flow between time tn and the next time
step tn+1, meaning the incremental elastic strains
are the incremental total strains. It can be shown
that the loading/unloading situation which is gov-
erned by the Kuhn-Tucker conditions can be iden-
tified using the trial elastic state (Simo and Hughes
2006). Once a plastic increment occurs, the new
state variables can be found by solving a nonlinear
equation system resulting from the time discretiza-
tion of the governing equations. This results in the
nonlinear system Hn which is derived specifically
for any given elasto-plastic model. For the partic-
ular model used in the current study, Hn is defined
as the collection of four incremental residuals, re-
sulting from the time linearization of the govern-
ing constitutive equations

1Hn = ε
pl
n−1 +(λn−λn−1)(

∂ f
∂σn

)T − ε
pl
n

2Hn = κn−1 +(λn−λn−1)

√
2
3
(

∂ f
∂σn

)T (
∂ f

∂σn
)−κn

3Hn = σn−1 +D
[
Bun−Bun−1− (ε pl

n − ε
pl
n−1)

]
−σn

4Hn = J2n−
1
3
(σy(κn))

2. (16)

The equation 1Hn represents the associative flow
rule; 2Hn represents the evolution of the isotropic
hardening parameter; 3Hn relates stresses to elastic
strains;; and 4Hn is the yield criterion in squared
form, with J2n representing the second deviatoric
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stress invariant evaluated using σn. It is worth not-
ing that the local nonlinear problem of Eq. (16)
can be solved efficiently as a scalar equation by a
return-mapping algorithm, for example as derived
by Simo and Taylor (1986) for plane stress situa-
tions. Nevertheless, for the purpose of sensitivity
analysis we find it convenient to use the full repre-
sentation as suggested by Michaleris et al (1994).

3 Topology optimization approach

The central goal of the proposed formulation is
to generate optimized structural layouts that can
sustain a certain load under a prescribed range of
displacements, while not exceeding the allowable
stress limitations. In the majority of studies so far,
this design problem was formulated as an opti-
mization of a linear-elastic structure, aimed at min-
imizing either compliance or volume. Stress limi-
tations were imposed as constraints, either locally
on each material point or in a global, aggregated
manner. In the suggested formulation, we approach
the same design goal in a completely different way.
Essentially, we seek the best trade-off between three
quantities: 1) The weight of the structure, coincid-
ing with the volume for single-material layouts; 2)
The load-bearing capacity, represented by the end-
compliance – the product of loads and displace-
ments at the final (time-wise) equilibrium point;
and 3) The overall sum of plastic strains, repre-
senting the violation of allowable stress limits. In
the numerical experiments, two variants of the op-
timization problem are examined. These arise from
assigning each of the above quantities 1 or 2 as
an objective, while constraining the other one and
quantity 3. It will be shown that both variants lead
to satisfactory results. In the remainder of this sec-
tion, quantity 2 is considered in the objective. Other
variants can be derived in a very similar manner.

3.1 Problem formulation

For the purpose of optimizing the topological lay-
out of a continuum, we follow the material distri-
bution approach (Bendsøe and Kikuchi 1988) to-
gether with the SIMP interpolation scheme (Bendsøe
1989) and its extension to multiple phases, usually

known as Modified SIMP (Sigmund and Torquato
1997). This implies that the design variables x are
densities at discrete material points, assigned at the
centroid of each finite element in the design do-
main and varying between zero (void) and 1 (solid).
The optimization problem can be stated as follows

min
x

g0 =−θN f̂T uN

s.t.: g1 =
Ne

∑
e=1

vexe−g?1 ≤ 0

g2 =
Ne

∑
e=1

NGP

∑
k=1

κ
ek
N −g?2 ≤ 0

0≤ xe ≤ 1, e = 1, ...,Ne

with: Rn(vn,θn,x) = 0 n = 1, ...,N

Hn(un,un−1,vn,vn−1,x) = 0 n = 1, ...,N. (17)

The objective is to maximize the end-compliance
for a given prescribed displacement, i.e. maximize
the load-bearing capacity for a given magnitude of
deformation. This quantity is evaluated using the
terminal values of the load factor θN and of the
displacements uN . The constraint g1 ensures that
no more than a certain prescribed volume g?1 is
utilized. The design volume is measured accord-
ing to the physical material density xe of each fi-
nite element. The physical densities x are related
to the mathematical variables x via widely used
filtering and projection techniques which will be
presented explicitly in the next section. The con-
straint g2 ensures that the overall spatial sum of
the plastic strains does not exceed a certain small
threshold g?2, which can in theory be zero. The sum
of plastic strains is evaluated based on the quantity
κN , i.e. the plastic strain measured at each Gauss
point in the finite element mesh, at the terminal
equilibrium point. Finally, the nonlinear residuals
Rn and Hn are as defined in Section 2.2 according
to the respective elasto-plastic model.

3.2 Design parametrization

The correspondence between the mathematical op-
timization variables x and the nonlinear finite ele-
ment analysis is as follows. First a standard density
filter is applied (Bruns and Tortorelli 2001; Bour-
din 2001) with a simple linear weighting function
to obtain x̃. The purpose of applying a density fil-
ter is to overcome the well-known difficulty of ar-
tificial checkerboard patterns as well as to intro-
duce a length scale in the design, thus avoiding
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results with very thin features that are difficult to
manufacture. Then, a Heaviside projection func-
tion (Guest et al 2004; Xu et al 2010) is utilized
in order to ‘push’ the design towards a distinct 0-
1 (or void-solid) layout. This yields the physical
density distribution,

xe =


η

[
e−βHS(1−x̃e/η)− (1− x̃e/η)e−βHS

]
0≤ x̃e ≤ η

(1−η)
[
1− e−βHS(x̃e−η)/(1−η)+

(x̃e−η)/(1−η)e−βHS
]
+η η < x̃e ≤ 1

(18)

where η is a threshold value and βHS is a parame-
ter determining the ‘sharpness’ of the smooth pro-
jection function. In the current study we use η =

0.5, meaning that any filtered density above 0.5 is
projected to 1 and any value below 0.5 is projected
to 0. The initial value of βHS is usually set to 1 and
it is increased gradually as the optimization pro-
gresses. Heaviside projections are typically intro-
duced in order to achieve crisp void-solid layouts
which are necessary in some design problems due
to manufacturing requirements. For the cases ad-
dressed in this article, it is not absolutely necessary
to utilize such projections, which increase the de-
gree of nonlinearity and may cause difficulties in
convergence. Nevertheless, it is useful to apply the
Heaviside projection, even with rather mild βHS
values, in order to minimize material transition re-
gions. In regions where the density is between zero
and one, also known as gray regions in topology
optimization, the elasto-plastic material law is ar-
tificial. This is due to the choice of penalization
scheme as will be explained below. Therefore, the
true stress in the actual (manufactured) structure
may differ from the computed stress within the
optimization. This motivates the minimization of
gray transition regions.

The constitutive model corresponding to J2 flow
theory involves three material parameters: Young’s
modulus E, the hardening fraction H and the initial
yield stress σ0

y . As mentioned above, an extension
to the SIMP approach for interpolating the three
parameters was originally presented by Maute et al
(1998). For evaluating the tangent stiffness matrix
and the internal forces vector, Young’s modulus is
interpolated in each finite element as follows

E(xe) = Emin +(Emax−Emin)xe
pE . (19)

In general, Emin and Emax are the values of Young’s
modulus of two candidate materials which are dis-
tributed in the design domain. For the case of dis-
tributing a single material and void, Emin is set to
be several orders of magnitude smaller than Emax.
Finally, pE is a penalization factor required to drive
the design toward a 0-1 layout. The initial yield
stress is penalized similarly,

σ
0
y (xe) = σ

0
y,min +(σ0

y,max−σ
0
y,min)xe

pσy (20)

where σ0
y,min and σ0

y,max are the initial yield stresses
for the two candidate materials, corresponding to
x= 0 and x= 1 respectively. From a physical point
of view, the penalization factor pσy should be equal
to pE so that the yield strain does not depend on the
density. However, in many cases it is necessary to
set pσy < pE in order to avoid numerical difficul-
ties arising when low density elements reach their
yield limit. The physical consequence is that in in-
termediate densities, the yield strain is artificially
higher than that of the full material, as shown in
Figure 1. Separate exponents in elasto-plastic topol-
ogy optimization were already introduced by Maute
et al (1998). This approach is used also with stress
constraints (namely the qp-relaxation, (Bruggi 2008))
and is similar to ε-relaxation approaches (Cheng
and Guo 1997).

In this study, we keep H independent of the
design variables because the post-yield stiffness is
already penalized via Eq. (19). Furthermore, the
essence of the design problem is to find designs
that do not yield or that have a very short post-
yield response. For such cases, it is not necessary
to consider an accurate post-yield response, espe-
cially for intermediate material densities. For solid
material, a constant H is the same as having a SIMP-
type interpolation for H.

4 Sensitivity Analysis

Considering the optimization problem in Eq. (17),
the derivatives of the volume constraint g1 are straight-
forward. The objective g0 and the constraint g2 in-
volve state variables, therefore an adjoint sensitiv-
ity analysis procedure is necessary. As mentioned
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(a)

(b)

Fig. 1: Normalized stress-strain curves for vari-
ous densities ρ and separate penalty exponents
pE and pσy . Top: pE = 1.0, pσy = 0.5; Bottom:
pE = 3.0, pσy = 2.5. For densities smaller than 1,
the yield strain is relatively delayed.

earlier, the design sensitivities are computed fol-
lowing the framework for transient, nonlinear cou-
pled problems described by Michaleris et al (1994).
In the following we focus on computing the deriva-
tives of a general functional with respect to the
physical densities x whereas the derivatives with
respect to x can then be computed by the chain
rule.

4.1 Backwards-incremental adjoint procedure

We begin by forming the augmented functional ĝ(x)

ĝ(x) = g−
N

∑
n=1

λ
T
n Rn(vn(x),θn(x))

−
N

∑
n=1

γ
T
n Hn(un(x),un−1(x),vn(x),vn−1(x),x) (21)

where for clarity, the dependency of g on state
and design variables was omitted. From here on,
λ n represents an adjoint vector corresponding to
increment n, not to be confused with the scalar
λn which is used for the time discretization of the
plastic multiplier λ̇ . Furthermore, λ n is a global
adjoint vector whereas γn is a local (Gauss-point)
adjoint vector. In principle, g can be a function of
all state variables throughout all time steps, in ad-
dition to its dependency on design variables. For
the particular functionals in Eq. (17), we see that
g0(x) = g0(uN(x),θN(x)) and g2(x) = g2(vN(x)).
These relations are utilized in the particular imple-
mentation of the adjoint procedure for each func-
tional.

The purpose of the adjoint procedure is to elim-
inate all terms involving derivatives of state vari-
ables with respect to design variables, which can-
not be computed explicitly. It can be seen that the
only explicit dependency upon design variables is
contained in Hn, yielding the expression for the ex-
plicit sensitivity with respect to an element physi-
cal density

∂ ĝexp

∂xe
=−

N

∑
n=1

γ
T
n

∂ (Hn)

∂xe
. (22)

The adjoint vectors γn (n = 1, ...,N) are computed
in each Gauss integration point by a backwards-
incremental procedure, which is required due to
path dependency of the elasto-plastic response. The
backwards procedure consists of the collection of
equation systems resulting from the requirement
that all implicit derivatives with respect to the de-
sign variables will vanish. Complete details regard-
ing the derivation of the adjoint procedure can be
found in Michaleris et al (1994), whereas specific
implementations are described by Amir (2011), Bo-
gomolny and Amir (2012) and Nakshatrala and
Tortorelli (2015). Implementations with other non-
linear material models were mentioned in the in-
troduction.
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The adjoint procedure begins with a coupled
system to be solved for λ N ,[
−∂ (RN)

∂ (vN)

∂ (HN)

∂ (vN)

−1
∂ (HN)

∂ (uN)

]T

λ N =

∂g
∂ (uN)

T

−

[
∂g

∂ (vN)

∂ (HN)

∂ (vN)

−1
∂ (HN)

∂ (uN)

]T

∂ (RN)

∂ (θN)

T

λ N =
∂g

∂ (θN)
(23)

where
[

∂ (RN)
∂ (vN)

∂ (HN)
∂ (vN)

−1 ∂ (HN)
∂ (uN)

]
is the tangent stiff-

ness matrix corresponding to the converged state
at increment N (Michaleris et al 1994). γN is then
determined on a Gauss-point level by solving

∂ (HN)

∂ (vN)

T

γN =−∂ (RN)

∂ (vN)

T

λ N +
∂g

∂ (vN)

T

. (24)

Proceeding incrementally backwards in time, in the
n-th increment the coupled adjoint equations are
solved to determine λ n[

−∂ (Rn)

∂ (vn)

∂ (Hn)

∂ (vn)

−1
∂ (Hn)

∂ (un)

]T

λ n =
∂g

∂ (un)

T

−

[
∂g

∂ (vn)

∂ (Hn)

∂ (vn)

−1
∂ (Hn)

∂ (un)

]T

−

[
∂ (Hn+1)

∂ (un)
− ∂ (Hn+1)

∂ (vn)

∂ (Hn)

∂ (vn)

−1
∂ (Hn)

∂ (un)

]T

γn+1

∂ (Rn)

∂ (θn)

T

λ n =
∂g

∂ (θn)
(25)

followed by the solution of the local adjoint vector
γn on a Gauss-point level

∂ (Hn)

∂ (vn)

T

γn = −∂ (Rn)

∂ (vn)

T

λ n

− ∂ (Hn+1)

∂ (vn)

T

γn+1 +
∂g

∂ (vn)

T

. (26)

Once γn is determined, its contribution to the de-
sign sensitivities is computed. Then the procedure
continues to the previous increment denoted by n−
1. This is repeated until all contributions are col-
lected to obtain the required design sensitivities.

The partial derivatives of the objective, the con-
straints, the global residuals and the local residuals

with respect to the state variables are required for
implementing the adjoint procedure. The deriva-
tives ∂ (Rn)

∂ (vn)
and ∂ (Rn)

∂ (θn)
can be easily obtained from

Eq. (14) whereas the derivatives ∂ (Hn)
∂ (un)

, ∂ (Hn+1)
∂ (un)

,
∂ (Hn)
∂ (vn)

, ∂ (Hn+1)
∂ (vn)

and ∂ (Hn)
∂xe

are related to the particu-
lar elasto-plastic model and to the choice of the in-
ternal variables v. For the model considered herein
based on classical J2 flow theory, they can be de-
rived by differentiation of Eq. (16). An explicit
example of these derivatives was given in Amir
(2011). Finally, the partial derivatives ∂g

∂ (uN)
, ∂g

∂ (vN)
, ∂g

∂ (θN)
,

∂g
∂ (un)

, ∂g
∂ (vn)

and ∂g
∂ (θn)

can be derived explicitly for
each functional to be considered in the problem
formulation of Eq. (17).

It should be noted that when implementing the
adjoint procedure, the derivatives of the local resid-
uals Hn and Hn+1 should maintain consistency with
respect to the analysis. In essence, four situations
are possible at a certain sequence of increments
{n,n+1}: 1) Continuous elastic response; 2) Elastic-
plastic transition; 3) Continuous plastic response;
and 4) Plastic-elastic transition (during unloading).
The actual situation encountered affects the com-
putation of the derivatives of the respective resid-
uals. In general, the derivatives of the local resid-
ual are matrices of varying sizes, depending on the
situation which is determined exclusively by the
elastic trial state.

The final component required for performing
the sensitivity analysis is the derivative of the resid-
ual Hn with respect to the physical material den-
sity. Combining Eqs. (16), (19) and (20), we obtain

∂ (Hn)

∂xe
=


0
0

∂E
∂xe

D0(ε
el
n − εel

n−1)

− 2
3 (σ

0
y +HEκn)(

∂σ0
y

∂xe
+H ∂E

∂xe
κn)


(27)

where ∂E
∂xe

and
∂σ0

y
∂xe

are derived from Eqs. (19) and
(20), and D0 is the elastic constitutive tensor for
Young’s modulus equal to 1.
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5 Examples

In this section we present several numerical ex-
amples that demonstrate the applicability of the
proposed approach for solving stress-constrained
topology optimization. Different variants of the op-
timization problem of Eq. (17) are considered. All
optimization problems are solved by the method
of moving asymptotes - MMA (Svanberg 1987).
Specific parameters required for reproducing the
results are given within the text.

5.1 Example 1: Stress-constrained L-bracket
design

In the first example we consider the classical case
of an L-bracket, which is often used to evaluate
new procedures for topology optimization under
stress constraints (e.g. Le et al (2010) and refer-
ences therein), see Figure 2 for the problem setup.
In particular, the case of the L-shaped domain with
a point load at the position {1.0,0.4} is thoroughly
examined, as by Le et al (2010) and Verbart et al
(2016). A similar problem, often appearing in ar-
ticles about stress constraints, is the case in which
the point load is applied at the position {1.0,0.2}.
In the author’s opinion, the latter is somewhat eas-
ier to deal with because the optimized layout for
compliance only has a wider angle in the re-entrant
corner, see Figures 3a and 8a. Therefore the former
case is in the center of the following examination,
in order to fairly evaluate the proposed approach.
The latter case is presented subsequently for the
sake of completeness.

5.1.1 Reference design: no stress limitation

First, a maximization of end-compliance subject
to a volume constraint only is performed, given a
certain prescribed displacement. This is necessary
in order to identify the “stiffest design” achiev-
able without any limitation on stresses. The load
is distributed over the top 10 nodes in order to
avoid artificial stress concentrations at the loading
point. Assuming the 10 adjacent nodes will have
almost identical vertical displacements, it is suf-
ficient to measure the end-compliance based on a

Fig. 2: Problem setup for topology optimization of
an L-bracket. The load is distributed over the top
10 nodes in order to avoid artificial stress concen-
trations at the loading point.

single DOF where the displacement is prescribed,
instead of measuring the complete end-compliance.
This somewhat simplifies the computational im-
plementation of the adjoint equations, although the
derivation above is general and applicable to any
loading situation. With reference to the formula-
tion in Eq. (17), the objective now includes only
the product of force and displacement at the pre-
scribed DOF and the constraint g2 is omitted. The
resulting layout and performance coincide with those
that can be obtained by a linear-elastic minimum
compliance topology optimization procedure. This
is expected for an elasto-plastic single-material op-
timization with strain hardening. If multiple ma-
terials are considered, with distinct yield stresses
and hardening behaviors, the optimized layouts may
differ from linear-elastic minimum compliance lay-
outs, see for example Kato et al (2015). The model
is discretized with a 150×150 mesh resolution con-
sisting of 14,400 square, bi-linear elements. The
available volume is set to 35% of the total vol-
ume of the L-shaped domain and the filter radius
is 0.02. The prescribed displacement the position
{1.0,0.4} is set to up = 0.01 and automatic dis-
placement incrementation is applied, where the in-
crement size is adapted based on the convergence
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of Newton-Raphson iterations in the previous in-
crement. The material parameters are given in Ta-
ble 1 and are essentially constant for all examples.

Emin 1.0 ·10−3

Emax 1.0 ·103

ν 0.3
σ0

y,min 0.0
σ0

y,max 2.0
H 0.01

Table 1: Material parameters used for all exam-
ples.

According to the numerical experiments, a con-
tinuation scheme involving both the penalty expo-
nents and the Heaviside sharpness yields the best
results. The parameters pE and pσy are increased
gradually throughout the optimization process. The
initial values are set to pE = 1.0 and pσy = 0.5 and
they are increased by 0.1 every 10 design cycles,
up to the values of 5.0 and 4.5 respectively. The pa-
rameter βHS is initialized at 1.0 and multiplied by
1.1 every 10 design cycles, but only when pE ≥
3.0. The upper limit for βHS is set to 10.0 in order
to avoid highly nonlinear projection functions. In
the call to MMA, the derivatives of the compliance
objective are multiplied by 105 in order to obtain
good scaling and consequently fast convergence of
the MMA sub-problems. It is known that the per-
formance of MMA can be affected by this scaling
parameter, which should be chosen according to
the values of the actual quantities – in this case, the
magnitude of the end-compliance is in the order of
10−5. According to the author’s experience, if the
problem is badly scaled then it can slow down con-
vergence and in some cases lead the overall opti-
mization process to inferior local minima. An ex-
ternal move limit of 0.2 on the MMA update is
enforced. In all examples presented in this section,
the optimization is terminated after 500 design cy-
cles. The stopping criterion that was imposed, re-
quiring that the maximum change in an element’s
density is below 10−3, was never achieved.

The optimized topology is presented in Fig-
ure 3a. The end-compliance, the sum of equiva-
lent plastic strains and the volume are presented in

the second column of Table 2. The stress distribu-
tion in terms of von Mises stresses is presented in
Figure 3d and the distribution of equivalent plas-
tic strains in Figure 3g. It can be seen that there
is a significant stress concentration in the vicinity
of the re-entrant corner. The maximum von Mises
stress is 2.16, meaning it exceeds the allowable
value.

5.1.2 Constraining the plastic straining

The exact same problem setup is used to demon-
strate the capability of the proposed approach to
capture local stress concentrations and to consider
them when seeking the optimized topology. We
add a single, global constraint on the total sum of
the equivalent plastic strains at the final equilib-
rium state, as in Eq. (17). It will be shown that the
stress distribution is improved and stress concen-
trations are avoided. All material parameters re-
main the same, so does the continuation scheme
for pE , pσy and βHS as well as the scaling and
move limit for MMA. A small threshold of g?2 =

10−4 is set for the constraint on plastic strains,
providing some slack and improving the conver-
gence to a design with almost zero plastic strains.
The optimized topology is presented in Figure 3b.
The end-compliance, the sum of equivalent plastic
strains and the volume are presented in the third
column of Table 2. The stress distribution in terms
of von Mises stresses is presented in Figure 3e and
the distribution of equivalent plastic strains in Fig-
ure 3h. The maximum von Mises stress is equal to
the allowable value of 2.00. It should be noted that
very small plastic strains can be measured even
if the von Mises stress does not exceed the yield
limit, in case the density of the element did not
converge precisely to 1.

Examining the optimized layout, it can be seen
that the proposed approach can indeed generate
designs that circumvent stress concentrations. The
modification of the design, compared to the one
optimized for end-compliance only, is quite subtle
– a rounding of the re-entrant corner and a stiff-
ening of the bars meeting at the corner in order to
compensate for the reduced stiffness of the rounded
corner. This result is slightly different from those
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Max. end-comp. Max. end-comp. s.t. vol. Min. vol. s.t. end-comp.
s.t. vol. and plastic strains and plastic strains

End-compliance θN f̂ pup
N 4.3013 ·10−5 3.8163 ·10−5 3.7908 ·10−5

Plastic strains ∑
Ne
e=1 ∑

NGP
k=1 κek

N 2.0455 ·10−1 1.3353 ·10−3 1.1369 ·10−2

Volume ∑
Ne
e=1 vexe

0.35·Ne·ve
−1 −5.6769 ·10−7 −2.7461 ·10−4 −2.2727 ·10−2

Maximum σV M 2.1660 2.0000 1.9990
Figures 3a, 3d, 3g 3b, 3e, 3h 3c, 3f, 3i

Table 2: Results of the topology optimization of an L-bracket with a load at the top right corner. For
the same volume and under the same prescribed displacement, constraining the sum of equivalent plastic
strains leads to nearly zero plastic strains while compromising the end-compliance by 13%.

achieved in previous studies referenced above, and
appears to be the closest one to the layout obtained
without stress considerations. It resembles a re-
sult achieved by Bruggi and Venini (2008) with a
mixed-FEM approach and local stress constraints.
It also resembles a result achieved by Le et al (2010)
but for a much higher volume fraction (see Fig-
ure 7(b) in the referenced article). It can be argued
that the primary design change is a shape modifi-
cation, that may have been generated by a shape
optimization procedure following topology opti-
mization without stress constraints. Nevertheless,
it can be seen that topological changes are indeed
introduced, for example the stiffening bars orthog-
onal to the main bars. This means that perform-
ing topology optimization without stress consider-
ations, followed by shape optimization with stress
considerations, may not be sufficient for finding
the best layout in terms of both topology and shape.

As for the stress distribution, it is evident that
adding a constraint on plastic strains leads to a
more uniform distribution of extreme stresses. Hence
stress constraint violation is implicitly avoided with-
out actually imposing local stress constraints on
each material point. Nevertheless, a slight viola-
tion of the global constraint on plastic strains is
observed – plastic straining is present in the first
element near the re-entrant corner. This violation
can be attributed to several factors: 1) The non-
differentiability of plastic strains at the yield point,
causing difficulties in satisfying the constraint pre-
cisely; 2) The inherent approximation due to the
use of a sequential convex programming method
for solving a non-convex problem; and 3) The qual-
ity of the optimization algorithm itself.

Another possibility to achieve the same design
goal is by interchanging end-compliance and vol-
ume in Eq. (17). This corresponds to minimizing
the volume of the optimized design while requir-
ing a certain load-bearing capacity for a given pre-
scribed displacement. The end-compliance is con-
strained to 3.8 ·10−5 in order to obtain a good com-
parison with the result of maximization of end-
compliance s.t. volume and plastic strains. The ini-
tial volume fraction is set to 100% of the domain.
All parameters used in the solution of the previ-
ous case retain the same values, except for the con-
tinuation on the penalization exponents. For effec-
tively constraining the end-compliance, it is nec-
essary to begin the process with some penalty in
Eqs. (19) and (20). Therefore the initial values are
chosen as pE = 3.0 and pσy = 2.5 and they are kept
constant for the first 200 iterations. Then, the same
continuation scheme is applied as for the previous
cases. The optimized topology is presented in Fig-
ure 3c. The end-compliance, the sum of equiva-
lent plastic strains and the volume are presented in
the fourth column of Table 2. The stress distribu-
tion in terms of von Mises stresses is presented in
Figure 3f and the distribution of equivalent plas-
tic strains in Figure 3i. The maximum von Mises
stress is 1.999, just below the allowable value.

5.1.3 Elasto-plastic performance of the optimized
design

For examining the actual benefit from the proposed
formulation, it is interesting to examine the elasto-
plastic response of the three designs obtained in
the numerical experiments. In particular, we wish
to track the initial yield of each design, in terms
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Topology optimization of an L-bracket with a load and a prescribed displacement at the top right
corner. From the left: maximizing the end-compliance s.t. a volume constraint; maximizing the end-
compliance s.t. constraints on volume and on the total sum of equivalent plastic strains; minimizing
volume s.t. constraints on end-compliance and on the total sum of equivalent plastic strains. From top:
optimized layouts; von Mises stress distributions; equivalent plastic strains in the vicinity of the re-entrant
corner. The stresses in (d) exceed the yield stress whereas in (e) and (f) they do not, see also Table 2. Note
also the two orders of magnitude difference between the plastic strains of sub-figure (g) compared to (h)
and (i).

of the magnitudes of load and displacement. This
will provide insight on the capability of achieving
actual constraining of extreme stresses. For clar-
ification, even though the analysis here includes
the plastic regime, the aim is not to optimize the
full elasto-plastic response nor the ultimate load-
bearing capacity. The responses are directly com-
pared to a result by Le et al (2010), in particular the

layout in Fig. 7(e) of the referenced article whose
setting is the closest to the current problem defini-
tion.

A simple post-processing of the layouts ob-
tained in the current study is performed, consisting
of a rounding of all intermediate design variables
to 10−6 and 1, with 0.5 as the threshold value. This
hardly affects the layout and volume (thanks to the



Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity 15

Heaviside projection utilized within the optimiza-
tion process) and facilitates a more accurate elasto-
plastic analysis. The only visible difference is that
a thin bar in the minimum volume design is par-
tially deleted, hence it will not contribute to the
transfer of forces in the comparative case. An im-
age of the layout obtained by Le et al (2010) was
imported and processed to obtain a design as sim-
ilar as possible to the original, while adapting the
mesh resolution to that of the current study. The
same projection scheme was applied as described
above but with a threshold of 0.26 for achieving
roughly the same volume fraction as the other de-
signs. The four post-processed layouts are presented
in Figure 4.

For convenience, the layouts are tagged #1, #2,
#3 and #4, corresponding to maximum end-compliance
s.t. volume, maximum end-compliance s.t. volume
and plastic strains, minimum volume s.t. end-compliance
and plastic strains and the design by a p-norm ap-
proach (Le et al 2010). The computed volume frac-
tions are 34.82%, 35.11%, 34.21% and 34.84% for
designs #1, #2, #3 and #4, respectively. The solu-
tion parameters are the same as for the optimiza-
tion runs, except for the prescribed displacement:
it is increased to 0.02 in order to guarantee that all
designs enter the plastic regime so that their actual
elasto-plastic response can be compared. The dis-
placement is applied within 40 equal increments.
Furthermore, pE = 1.0 and pσy = 0 so that for the
solid parts the true elasto-plastic law is obtained,
whereas for void there is effectively no yield.

The load-displacement curves at the prescribed
DOF are presented in Figure 5. It can be seen that
the responses of the designs obtained with a con-
straint on plastic strains exhibit a significant de-
lay of the initial yield. The magnitude of load at
the initial yield is increased by approximately 42%
and 54% compared to the reference design #1, for
designs #2 and #3, respectively. This comes with
a certain compromise on stiffness, meaning that
the displacement level for a given load is slightly
higher – this is expected because layout #1 is “the
stiffest design”. These results demonstrate the ca-
pability of the proposed approach to provide topo-
logical designs that account for stress constraints
in an early design stage. The topological layouts

obtained provide a significant delay in the initial
yield alongside a minor compromise on stiffness.
This coincides with the common design goal of
finding a stiff design that does not fail prematurely.

The suggested elasto-plastic optimization also
provides superior trade-offs of volume-stiffness-
strength, compared to those obtained with a p-norm
approach (Le et al 2010). For very similar volume
fractions, designs #2 and #3 are stiffer and stronger
than design #4. Most importantly, the initial yield
is obtained at a higher load level, presumably be-
cause the proposed formulation provides tighter
control over local stress violations, in particular
when compared to p-norm approaches.

Fig. 5: Elasto-plastic response of the three opti-
mized designs of an L-bracket loaded at the top of
the right side. The designs optimized with a con-
straint on plastic strains exhibit an initial yield de-
layed by 42% and 54% in terms of forces, com-
pared to the stiffest design without stress consider-
ations. Performance is improved in comparison to
the p-norm approach (Le et al 2010), in terms of
stiffness and strength for a given volume.

The design #4 by Le et al (2010) was obtained
without a constraint on compliance, therefore it is
somewhat unfair to compare it directly to the re-
sults of the current approach that have compliance
in the objective or as a constraint. The current ap-
proach is not effective without a compliance func-
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(a) (b)

(c) (d)

Fig. 4: Post-processed 0/1 designs of the L-bracket for comparing the elasto-plastic responses of the
optimized layouts. Only minor changes are observed compared to the results of optimization in Figure 3.
The layout (d) is based on an image imported from Le et al (2010) for comparing the responses.

tional. The reason is that the elasto-plastic anal-
ysis is controlled by displacements therefore the
load magnitude is a state variable. In such settings,
minimizing volume s.t. stresses only can lead to
a void design. Apart from that, in many industrial
settings it is necessary to consider both compliance
and stresses, or in other words both stiffness and
strength. Satisfying a stress constraint only may
not lead to a viable design in a realistic scenario,
as it could be too flexible.

A more fair comparison to design #4 is hereby
presented. The compliance constraint was relaxed

to 3.0 · 10−5 – a level that resembles that of the
reference – and volume minimization was pursued
s.t. constraints on plastic strains and compliance.
The resulting design has a volume fraction of 26.14%
(compared to 34.84% in layout #4), yields at a
similar (even slightly higher) load level as design
#4 and is slightly stiffer – despite the significant
decrease in weight. The optimized layout and the
load-displacement curves of the post-processed de-
signs are presented in Figure 6.
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(a)

(b)

Fig. 6: Optimization of an L-bracket obtained
by minimizing volume s.t. constraints on plas-
tic strains and a relaxed compliance constraint of
3.0 · 10−5. Optimized layout (top) and the elasto-
plastic response compared to the design by Le et al
(2010) (bottom). The compliance target resembles
that of the reference for the sake of a fair compar-
ison. The current approach leads to slightly higher
strength and stiffness, while the volume fraction is
reduced from 34.84% to 26.14%.

5.1.4 Increasing the allowable maximum stress

The results presented so far were based on stress
and compliance targets which are very close to that
of the compliance-based design, generated in Sec-
tion 5.1.2. A question arises whether the proposed
formulation can effectively control the stresses also
in cases where more slack is available. For demon-

strating such capabilities, the optimizations from
Section 5.1.2 are repeated with an allowable stress
of σ0

y,max = 3.0. All other solution parameters are
kept the same.

The optimized layouts obtained for maximiz-
ing the end-compliance s.t. constraints on volume
and plastic strains, and for minimizing volume s.t. con-
straints on end-compliance and plastic strains, are
displayed in Figure 7. It can be seen, that with
the same volume constraint, the higher allowable
stress enables a stiffer design that achieves an end-
compliance of θN f̂ pup

N = 4.1761 · 10−5 and visu-
ally is something in between the designs in Figures
3a and 3b above. At the same time, minimizing
the volume while keeping the constraint on end-
compliance as before, leads to a design with a vol-
ume fraction of 31.78% (as expected, lighter than
before) that does not need to circumvent the re-
entrant corner. This is because it is possible to sat-
isfy the end-compliance of θN f̂ pup

N = 3.8 · 10−5

without having a stress concentration that exceeds
the higher allowable stress of σ0

y,max = 3.0.

5.1.5 L-bracket with a load at the mid-point

As mentioned above, many previous studies on stress-
constrained topology optimization treated the L-
bracket problem with a point load at the middle of
the right side edge. Therefore it is interesting to ap-
ply the proposed approach also for this setup. A di-
rect comparison of the final elasto-plastic response
to a published result is sought also for this case.
For this purpose, a layout obtained using a level-
set approach by Amstutz and Novotny (2010) is
chosen – in particular, the design in the center of
Fig. 8 in the referenced article. The volume frac-
tion for the current optimization runs is modified
accordingly, to 48.25%. All other parameters re-
main the same as for the L-bracket with a load
at the top, except for the local distribution of the
point load – 5 nodes are sufficient in this case for
avoiding a stress concentration.

The results for the three formulations are pre-
sented in Table 3. The observed trends are the same
as for the first case: with the same volume fraction,
nearly zero plastic strains can be achieved with a
compromise of roughly 23% on end-compliance.
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(a)

(b)

Fig. 7: Optimized L-brackets with an allowable
stress of σ0

y,max = 3.0. Top: maximizing the end-
compliance s.t. constraints on volume and on
the total sum of equivalent plastic strains; Bot-
tom: minimizing volume s.t. constraints on end-
compliance and on the total sum of equiva-
lent plastic strains. Compared to the results with
σ0

y,max = 2.0, stiffer (top) or lighter (bottom) trade-
offs are achieved, depending on the choice of ob-
jective.

The minimum volume procedure achieves a vol-
ume fraction far below 48.25% but also exhibits
slightly higher plastic strains. The optimized lay-
outs are presented in Figure 8. It can be seen again,
that rather subtle shape and topological changes
are introduced in order to avoid the stress concen-
trations. This facilitates a relatively minor reduc-
tion in stiffness compared to the “stiffest” design.
The generated layouts resemble those achieved by
other approaches, e.g. by Allaire and Jouve (2008),
by Amstutz and Novotny (2010) and by James and
Waisman (2014).

For examining the elasto-plastic response, the
post-processing described above is repeated. The
computed volume fractions are 48.05%, 48.35%,
38.54% and 48.74% for designs #1, #2,#3 and #4,
respectively. Design #4 corresponds to the inter-
pretation from Amstutz and Novotny (2010), Fig. 8.
The load-displacement curves at the prescribed DOF
for a displacement incrementation up to 0.02 are
presented in Figure 9. Again, the responses of the
designs obtained with a constraint on plastic strains
exhibit a significant delay of the initial yield. Quite
remarkably, the magnitude of load at the initial
yield is increased by approximately 72% compared
to the reference design #1, for designs #2 and #3.
The yielding of designs #2 and #3 is postponed
also in comparison with the layout taken from Am-
stutz and Novotny (2010). This highlights the ca-
pability of the proposed approach to generate de-
signs with high quality trade-offs of volume-stiffness-
strength.

Fig. 9: Elasto-plastic response of the three opti-
mized designs of an L-bracket loaded at the mid-
dle of the right side. The designs optimized with a
constraint on plastic strains exhibit an initial yield
delayed by 72% in terms of forces, compared to
the stiffest designs without stress considerations.
The attained stiffness is slightly lower than in Am-
stutz and Novotny (2010), but the initial yield is
postponed.
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Max. end-comp. Max. end-comp. s.t. vol. Min. vol. s.t. end-comp.
s.t. vol. and plastic strains and plastic strains

End-compliance θN f̂ pup
N 1.0979×10−4 8.4328×10−5 8.4309×10−5

Plastic strains ∑
Ne
e=1 ∑

NGP
k=1 κek

N 1.1400×100 5.9734×10−4 2.1170×10−3

Volume ∑
Ne
e=1 vexe

0.4825×Ne×ve
−1 −5.1457×10−7 −3.9286×10−4 −2.0116×10−1

Maximum σV M 2.3590 2.0000 2.0000
Figures 8a 8b 8c

Table 3: Results of the topology optimization of an L-bracket with a load at the mid point of the right
side. For the same volume and under the same prescribed displacement, constraining the sum of equivalent
plastic strains leads to nearly zero plastic strains while compromising the end-compliance by 23%. The
minimum volume procedure reaches a volume fraction of 39.45% but exhibits higher plastic strains.

5.2 Example 2: Stress-constrained U-bracket
design

The second example demonstrates the topologi-
cal design of a U-bracket with a horizontal load,
see Figure 10 for the problem setup. Here, two
regions of stress concentrations are expected be-
cause the load path should pass via both re-entrant
corners. The model is discretized with a 200×100
mesh resolution consisting of 17,500 square, bi-
linear elements. The available volume of material
is set to 40% of the total volume and the filter ra-
dius is 0.03. The prescribed displacement is set to
up = 0.01 and automatic displacement incremen-
tation is applied. The material parameters are the
same as for the previous examples. The continu-
ation scheme is slightly modified in order to ex-
amine the capability of beginning the optimiza-
tion with some penalization, namely pE = 3.0 and
pσy = 2.5. This is in contrast to initial values of
pE = 1.0 and pσy = 0.5 that were used in the pre-
vious example. Again, for the minimum volume
case the penalty exponents pE = 3.0 and pσy = 2.5
are constant for the first 200 design cycles in order
to enable feasibility of the compliance constraint.
Otherwise, the continuation scheme and MMA pa-
rameters are identical to the previous example.

As before, we examine three optimization prob-
lems: maximizing the end-compliance s.t. a vol-
ume constraint; maximizing the end-compliance
s.t. constraints on volume and on the total sum of
equivalent plastic strains; and minimizing volume
s.t. constraints on end-compliance and on the to-
tal sum of equivalent plastic strains. The optimized

topologies, the von Mises stress distributions and
the distributions of equivalent plastic strains are
presented in Figure 11. The end-compliances, the
sums of equivalent plastic strains and the volumes
are presented in Table 4.

It can be clearly seen that the suggested ap-
proach generates designs that circumvent stress con-
centrations in the vicinity of the re-entrant corners.
The two latter solutions provide different trade-
offs of stiffness to weight while keeping plastic
strains at a very low level. It is interesting to see
that the maximization of end-compliance subject
to a constraint on plastic strains suggests an al-
ternative load path to that of the reference design.
Considerable forces are transferred via a vertical
bar in the right side edge, enabling the reduction
of stresses near the re-entrant corners. This force
transfer appears also in the minimum volume de-
sign but to a lesser extent. In both designs, the
compliance is compromised by roughly 22% in
comparison to the reference solution which exhibits
two significant stress concentrations. The minimum
volume procedure appears to deliver slightly bet-
ter results as it provides the same compliance, but
uses only 36.4% of the design domain. Finally, a
comparison of the initial yield level of the opti-
mized designs reveals an increase of approximately
89% in the applied force prior to yielding, com-
pared to the optimized design achieved without stress
considerations. This demonstrates the capability of
the proposed approach to deal with multiple stress
concentrations without any added complexity.
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(a) (b)

(c) (d)

Fig. 8: Topology optimization of an L-bracket with a load and a prescribed displacement at the mid right.
The presented layouts are obtained after a 0/1 projection as described in the text, for further examination
of the elasto-plastic response. (a) maximizing the end-compliance s.t. a volume constraint; (b) maximiz-
ing the end-compliance s.t. constraints on volume and on the total sum of equivalent plastic strains; (c)
minimizing the volume s.t. constraints on the end-compliance and on the total sum of equivalent plastic
strains. (d) The layout based on an image imported from Amstutz and Novotny (2010) for comparing the
responses.

5.3 Example 3: Stress-constrained two-bar
structure

The examples presented so far consisted of cases
with inherent stress concentrations due to the exis-
tence of re-entrant corners in the definition of the
design domain. The final example addresses an-
other classical case from the literature – the de-
sign of a two-bar truss-like structure, see for exam-

ple Bruggi and Duysinx (2012). In this case, the
optimized design is expected to be nearly “fully
stressed” as it resembles a statically determinate
truss with two bars.

For demonstrating the capability of the pro-
posed approach in finding the stress-constrained
optimized design, we apply the volume minimiza-
tion formulation, with constraints on end-compliance
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Fig. 10: Problem setup for topology optimization of a U-bracket. The load is distributed over the top 10
nodes in order to avoid artificial stress concentrations at the loading point.

Max. end-comp. Max. end-comp. s.t. vol. Min. vol. s.t. end-comp.
s.t. vol. and plastic strains and plastic strains

End-compliance θN f̂ pup
N 8.6786 ·10−5 6.7559 ·10−5 6.7756 ·10−5

Plastic strains ∑
Ne
e=1 ∑

NGP
k=1 κek

N 5.0729 ·10−1 8.9298 ·10−4 2.9604 ·10−3

Volume ∑
Ne
e=1 vexe

0.40·Ne·ve
−1 −4.4559 ·10−7 −2.0678 ·10−3 −9.0041 ·10−2

Maximum σV M 2.2490 1.9720 1.9880
Figures 11a, 11d, 11g 11b, 11e, 11h 11c, 11f, 11i

Table 4: Results of the topology optimization of an U-bracket with a load at the top right corner. For
the same volume and under the same prescribed displacement, constraining the sum of equivalent plastic
strains leads to nearly zero plastic strains while compromising the end-compliance by 22%.

and plastic strains. The problem setup is presented
in Figure 12a. The model is discretized with a 40×120
mesh resolution consisting of 4,800 square, bi-linear
elements. The reference load is applied on 11 ad-
jacent nodes. The prescribed displacement is set
to 1 · 10−3 and the allowable end-compliance is
1 ·10−5. Material parameters are as in Table 1 and
the filter radius is 0.02. The continuation scheme is
in principle the same as in previous volume min-
imization examples, except that we skip the first
200 iterations in which the penalty is constant and
the Heaviside projection is not applied – i.e. we
continuously increase pE , pσy and βHS from the
beginning. This is because the relative simplicity
of the design problem and the smaller size of the
model.

The optimized layout is presented in Figure
12b. It can be seen that a crisp solid-void design

was obtained. The final volume fraction is 15.20%,
the compliance constraint is active and the sum of
equivalent plastic strains is ∑

Ne
e=1 ∑

NGP
k=1 κek

N = 1.0742·
10−4. The maximum von Mises stress is 2.00 and
the stress distribution in the optimized design is
displayed in Figure 12c. This result demonstrates
the capability of the suggested approach to deal
with relatively uniform stress distributions, where
the stress in many material points approaches the
allowable value.

6 Conclusion

A new approach for achieving stress-constrained
topological designs in continua was presented. The
main novelty is in the use of material nonlinearity,
in the form of classical elasto-plasticity models, in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11: Topology optimization of a U-bracket with a load and a prescribed displacement at the top
right corner. From the left: maximizing the end-compliance s.t. a volume constraint; maximizing the
end-compliance s.t. constraints on volume and on the total sum of equivalent plastic strains; minimizing
volume s.t. constraints on end-compliance and on the total sum of equivalent plastic strains. From top:
optimized layouts; von Mises stress distributions; equivalent plastic strains in the vicinity of the re-entrant
corners. Note the two orders of magnitude difference between the scale of sub-figure (g) compared to (h)
and (i).

order to avoid imposing a very large number of
local stress constraints. Stress constraints are im-
plicitly satisfied by imposing a single global con-
straint on the spatial sum of the equivalent plas-
tic strains. Incorporating this constraint into for-
mulations for maximizing the end-compliance (for
a given prescribed displacement) subject to a vol-
ume constraint, or vice-versa, leads to optimized

designs with practically no stress violations. A crit-
ical comparison of the proposed approach to exist-
ing techniques, in terms of accuracy and efficiency,
is hereby presented.
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(a)

(b) (c)

Fig. 12: Topology optimization of a two-bar truss-
like structure. Problem setup (top), optimized lay-
out (bottom left) and its von Mises stress distribu-
tion (bottom right). The volume fraction is mini-
mized to 15.20% while satisfying the compliance
constraint without exceeding the allowable stress.

6.1 Designed trade-off

In view of real-world applications, stress-constrained
topology optimization should aim at finding the
best trade-off between three competing quantities:
volume, compliance and stress. The results pre-
sented in this article demonstrate the capability of
the plasticity-based formulation to attain high-quality

layouts in terms of this trade-off. Two types of op-
timized L-brackets were favorably compared to re-
sults obtained with constraint aggregation, using
either p-norms or an external penalty. This high-
lights one advantage of the current formulation –
stress constraints are captured accurately without
actually imposing a large number of constraints
on local stress values. There is an evident com-
putational price tag for the improvement in design
quantities, as will be discussed in the following.
Nevertheless, the results achieved in this study pro-
vide another, unexplored view on stress-constrained
topology optimization. This can motivate and fer-
tilize further development of more efficient, ap-
proximate techniques.

6.2 Computational cost

In its present form, the proposed formulation is
not as efficient as linear-elastic approaches. The
results reported in this paper were achieved with
a constant number of 500 design iterations for en-
abling continuation on penalty parameters and on
the sharpness of the smoothed Heaviside. Each de-
sign iteration requires a full nonlinear finite ele-
ment analysis, which typically uses 20-40 solu-
tions of linear equation systems, depending on the
automatic incrementation and on the convergence
of Newton-Raphson iterations. The compliance and
plastic strains functionals require an adjoint proce-
dure in each design iteration, which typically uses
5-10 solutions of linear equation systems, depend-
ing on the automatic incrementation. Stress-constrained
procedures based on linear elasticity and a certain
constraint aggregation technique will require only
a few solutions of linear equation systems per de-
sign iteration, depending on the specific aggrega-
tion scheme. Therefore, the current implementa-
tion of the plasticity-based approach is expected to
be slower than existing approaches. This includes
p-norm techniques (e.g. Le et al (2010)), external
penalty (e.g. Amstutz and Novotny (2010)) and to
some extent also formulations that introduce local
constraints (e.g. Bruggi and Venini (2008)).

Nevertheless, the relatively good design trade-
offs encourage further exploration of this approach,
focusing on reducing the computational burden.
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It may be possible to utilize other material mod-
els that may not be suitable for capturing the full
elasto-plastic response accurately, but may suffice
for the purpose of achieving a no-yield design. An-
other path to be explored is the reduction of dis-
placement increments and Newton-Raphson iter-
ations, by exploiting the fact that in most design
cycles the response is either linear-elastic or very
close to linear. Then the computational cost of a
single design cycle can be reduced to a level simi-
lar to that of a linear-elastic analysis. Another op-
tion is to utilize reanalysis techniques, which in
fact motivated the investigation of this formulation
in the first place (Amir 2011). These possibilities
will be investigated thoroughly in future work.

A full implementation of the procedures dis-
cussed in this article may appear as a rather com-
plex task. However, this is due to the need to im-
plement both the nonlinear analysis as well as the
sensitivity analysis. For integration in off-the-shelf
commercial software, the constitutive model and
nonlinear analysis procedures are readily available,
so only the sensitivity analysis needs to be added.
Apart from that, the optimization problem does not
possess any special properties and its solution can
be found using standard algorithms.

6.3 Further considerations

In many publications on stress constraints, the lo-
cal constraints are aggregated into a single, or a
few, global approximations of the maximum stress.
This often requires specific tuning of parameters
and does not ensure that the actual local stresses
will not exceed allowable values. This highlights
another advantage of the proposed approach, which
only requires a well-known elasto-plastic material
model that is already incorporated in standard FEA
packages. In the examples it can be observed that
the optimized designs involve both topological as
well as shape changes. This means that simply op-
timizing the shape of an optimized topology gen-
erated without stress considerations, may not suf-
fice for achieving the best possible design. Further-
more, incorporating stress considerations in the topo-
logical design phase can eliminate the need to post-
process the optimized topology, create a CAD model,

generate a new mesh and then optimize the shape
– a process that can be very time consuming in the
industrial context, particularly in 3-D.

A potential disadvantage of the proposed for-
mulation lies in the non-differentiability of the plas-
tic strains. According to the adopted formulation
of the elasto-plastic model, the yield stress limit
represents a non-differentiable point. This does not
affect the end-compliance functional because the
product of forces and displacements (or stresses
and strains) retains smoothness when passing the
yield point. Plastic strains however are strictly zero
up to this point and instantaneously increase when
passing this point. As can be seen in the numerical
experiments above, the non-differentiability did not
appear to hamper the convergence towards a de-
sign which does not violate the stress limit. This is
despite the fact that in the optimized designs, sev-
eral material points are indeed very close to their
yield limit. A differentiable approximation was in-
troduced in several numerical experiments in order
to examine its affect on the quality of the attained
solutions. The results did not show any improve-
ment in comparison to the original implementa-
tion, but this important issue will be thoroughly
examined in a continuation of the research.
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7 Appendix

In this appendix we present a numerical verifica-
tion of the adjoint sensitivity analysis procedure.
Implementing this procedure can be a somewhat
cumbersome task, so we believe this verification
can prove useful for readers who are not well-acquainted
with such procedures. Furthermore, accurate and
efficient sensitivity analysis for elasto-plastic re-
sponse is still a rather open issue, as discussed in a
recent publication (Kato et al 2015). In the follow-
ing, results of the adjoint computations are com-
pared to numerical derivatives computed by for-
ward finite differences.

We consider a small problem of a symmetric
clamped beam, where the symmetric half is mod-
eled with a finite element mesh of 2×2 square bi-
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linear elements. A downwards vertical displace-
ment is prescribed at the top right corner. Two sep-
arate loading situations are considered, see Figure
13 for the problem setup: 1) A point load at the
top right corner; and 2) A distributed load at the
right edge. The first case is easier to implement
because the equations for the global adjoint vec-
tors in Eqs. (23) and (25) take a simple form when
the force is applied only at the prescribed DOF.
However, the second case is much more useful, es-
pecially in the particular application considered in
this article: It is necessary to distribute the applied
load over several adjacent nodes because the nu-
merical solution with a point load will inherently
include stress concentrations.

The material and optimization parameters are
given in Table 5. The density xe in all four ele-
ments is set to 0.8. The prescribed displacement of
0.01 is applied within 10 equal increments. Con-
vergence of each increment is assumed when the
relative norm of the residual forces is below 10−6.
For the finite difference check, the perturbation value
is set to ∆xe = 10−6. We compare the design sen-
sitivities of two critical quantities in the context of
the current application: 1) The end-compliance at
the prescribed DOF, gec = −θN f̂ pup

N , where the
superscript p denotes the prescribed DOF; and 2)
The sum of plastic strains in the whole domain at
the final equilibrium state, gps = ∑

Ne
e=1 ∑

NGP
k=1 κek

N .

The comparisons between the derivatives com-
puted by the adjoint procedure to those obtained
by finite differences are presented in Tables 6 and
7 for the point load and distributed load, respec-
tively. It can be seen that the design sensitivities
are practically identical, thus verifying the deriva-
tion and the implementation of the adjoint proce-
dure. The nonlinear response of both test cases is
presented in Figure 14, in terms of load-displacement
curves at the prescribed DOF and equivalent plas-
tic strain. From the tables it can be seen that even
elements that are in the elastic regime contribute to
the sum of plastic strains, in two opposite modes
– i.e. the addition of material can either increase
or decrease the overall plastic strain, whereas it
always has a stiffening effect on compliance. Fi-
nally, the analysis and sensitivity analysis were re-
peated with 30 and 50 displacement increments.

Practically identical results were obtained for the
nonlinear respones as well as their design sensitiv-
ities.
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Fig. 13: Problem setup for verification of the adjoint sensitivity analysis. Left: point load; right: distributed
load.
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Fig. 14: Nonlinear response of the test cases used for verification of the sensitivity analysis. (a) Load
factor vs. prescribed displacement, point load; (b) Load factor vs. prescribed displacement, distributed
load; (c) Equivalent plastic strains, point load; (d) Equivalent plastic strains, distributed load.
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