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• Examples from Skidmore, Owings & Merrill (SOM)

Structural optimization in civil engineering

Besserud et al. 2013
Beghini et al. 2013

Truss optimization with buckling
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Structural optimization in civil engineering

• Difficulties with interpreting complicated
continuum forms

• Complicated conversion of continuum topology 
forms to practical construction

Besserud et al. 2013

Mostafavi et al. 2013
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• Robotic construction of optimized trusses

• Optimization based on:
• Ground structure approach

• Classical plastic design (LP) formulation

Utilizing innovative trends

“Practical” 
design

Design 
utilizing 
robotic 

capabilities
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• Minimum weight / volume under stress constrains

• Classical approach doesn’t take into account 
buckling considerations:

• Local buckling

• Global buckling

• Chain stability

Truss optimization using ground structure approach

Chain stability

Local buckling
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How are buckling considerations imposed in literature?

• Plastic design problem - sequentially
• Euler buckling (constraint on each bar)
• Chain stability (constraint on each 

sequence of unbraced connected bars)

Achtziger 1999

Ben-Tal et al. 2000,
Kocvara et al. 2002

• Semi-definite problem
• Global buckling (one stability constraint)
• Chain stability (by overlapping bars)

Torii et. al. 2014

• Eigen-value problem
• Global buckling
• Local stability (constraints)

Mela 2013

• Mixed-integer LP 
• Local buckling (constraint) 
• Chain stability (overlapping bars)
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• Account for all buckling considerations in a single formulation

The aim of the current work

• Use geometric nonlinear (GNL) beam formulation

• Optimize the response of the nonlinear structure, instead of 
imposing constraints

Main idea
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• GNL beam element derived using co-rotational formulation

• Kinematic assumptions:
• Large displacements

• Large rotations

• Small strains

• Computational scheme: Newton-Raphson
• Displacement control equilibrium

Geometric non-linear analysis

𝐑 𝐮, 𝜃 = 𝜃  𝐟𝐞𝐱𝐭 − 𝐟𝐢𝐧𝐭 𝐮 = 𝟎
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• Maximization of load-bearing capacity subject to a volume constraint with 
displacement control

Problem formulation - maxF

min
𝝆

𝑓 = −𝜃

𝑠. 𝑡. : g =  

𝑖=1

𝑛

𝜌𝑖𝑎𝑙𝑖 ≤ 𝑉∗

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑖 ≤ 𝜌𝑚𝑎𝑥 𝑖 = 1. . 𝑛

with: 𝐑 𝛒, 𝐮, 𝛌 = 𝜃  𝐟𝐞𝐱𝐭 − 𝐟𝐢𝐧𝐭 𝛒, 𝐮 = 𝟎 𝑢𝑝

Initial

Optimized

intermediate 
designs𝜃

𝑢
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• Minimization of volume subject to a constraint on load-bearing capacity 
with displacement control

Problem formulation - minV

min
𝝆

𝑓 = 𝑉

𝑠. 𝑡. : g = 𝜃 ≥ 𝜃∗

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑖 ≤ 𝜌𝑚𝑎𝑥 𝑖 = 1. . 𝑛

with: 𝐑 𝛒, 𝐮, 𝛌 = 𝜃  𝐟𝐞𝐱𝐭 − 𝐟𝐢𝐧𝐭 𝛒, 𝐮 = 𝟎 𝑢𝑝

Initial

Optimized

𝜃

𝑢
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• Non-linear programming by the Method of Moving Asymptotes (MMA) –
gradient based algorithm

• Sensitivity analysis following the adjoint method:

Sensitivity analysis and solution

 𝑐 𝜃, 𝛒, 𝐮 = 𝑐 𝜃, 𝛒, 𝐮 − 𝛌𝑇 𝜃𝐟𝐞𝐱𝐭 − 𝐟𝐢𝐧𝐭 𝛒, 𝐮

𝜕  𝑐

𝜕𝜌𝑒
=

𝜕𝑐

𝜕𝐮
+ 𝛌𝑇

𝜕𝐟𝐢𝐧𝐭

𝜕𝐮

𝜕𝐮

𝜕𝜌𝑒
+

𝜕𝑐

𝜕𝜃
− 𝛌𝑇𝐟𝐞𝐱𝐭

𝜕𝜃

𝜕𝜌𝑒
+ 𝛌𝑇

𝜕𝐟𝐢𝐧𝐭

𝜕𝜌𝑒

𝐾𝑓𝑓 𝐾𝑓𝑝

𝑓𝑒𝑥𝑡
𝑓

𝑓𝑒𝑥𝑡
𝑝

𝜆𝑓

𝜆𝑝
=

−
𝜕𝑐

𝜕𝑢𝑓

𝜕𝑐

𝜕𝜃

𝜕  𝑐

𝜕𝜌𝑒
= 𝛌𝑇

𝜕𝐟𝐢𝐧𝐭

𝜕𝜌𝑒

𝐾𝑓𝑓 𝐾𝑓𝑝

𝑓𝑒𝑥𝑡
𝑓

𝑓𝑒𝑥𝑡
𝑝

𝜆𝑓

𝜆𝑝
=

0
−1

𝑐 𝜃, 𝛒, 𝐮 = −𝜃
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𝑢𝑝

𝜃𝑃

Demonstration: the effect of imperfections

Ground structure Global imperfectionLocal imperfection

Small 𝑢𝑝 Large 𝑢𝑝

[-] Local only Global only Local only Local and 
global

Imp.:

Optimized 
layout:

Prescribed 
disp.:
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• Global buckling of a cantilever – Ben-Tal et al. 2000

Preliminary results

Ground 
structure

(global imp.)

Proposed 
approach

Ben-Tal 
result

𝜃𝑃

𝑢𝑝 = 0.2

1
.0

8 ∗ 1.0 = 8.0 0.5

0.2
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• Local stability of a cantilever – Achtziger 1999 

Preliminary results

Ground 
structure

(local imp. + 
overlaps)

Proposed 
approach

Achtziger’s
result

?

𝑢𝑝

𝜃𝑃

Ongoing work!
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𝑢𝑝 = 10−6

𝑢𝑝 = 10−1

𝑢𝑝 = 5 ⋅ 10−1

• Double-clamped truss

Preliminary results

Ground structure 
with local imp. and overlaps

1

6

In
creasin

g u
p
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• GNL beam model has been integrated into truss optimization

• Considering buckling through the nonlinear response can replace the 
imposition of buckling constraints

• Preliminary results resemble those achieved by more traditional 
approaches involving constraints on local and global stability

Ongoing work

• Choice of local eccentricity – Euler buckling

• Choice of prescribed displacement

• Choice of global imperfection – initial positions of nodes

• Dealing with convergence difficulties for intermediate designs

Summary
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Thank you!


