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Context – AATiD consortium

Develop advanced technologies for design and 3-D printing of optimized
complex aero-structures made of Titanium alloys, Ti-6Al-4V

Detailed goals:

Identify cost-effective parts, material qualification, optimize
process, simulate process, welding of printed parts, ...

Use topology optimization to achieve superior aero-structures
design compared with traditional design, in terms of weight, cost
and performance;

Embed printing technologies’ limitations in the structural
design process.
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Coupling TopOpt and Titanium AM
Airbus A320 nacelle hinge bracket [Tomlin and Meyer, 2011]:

IAI Gulfstream G250 gooseneck hinge [Muir, 2013]:
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Challenges in AM

Additive manufacturing typically requires extensive support material
to prevent curling and distortion:

Support overhang / inclination angle;

Support horizontal bridging distances;

Improve heat transfer.

Support material counter-balances
achievements of optimal design:

Longer build time, more material usage;

Extensive rework required for removing
supports;

Difficulties in clearing supports in internal
holes;

Compromise on stiffness-to-weight.

Support structure (Materialise)
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Dealing with overhang limitations

Necessary to embed the support requirement into the optimization

Post-process an optimized design?

Optimize for no-support?

Optimize for minimum support?

Optimize the build direction?

Use projection method to require support
in specified angle [Gaynor, 2015] →
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Current research

Goal: Derive a procedure that can account
for a given overhang limitation

Desired features:

Can generate designs with no support;

Can generate designs with limited support;

To be investigated in 2-D but extendable to 3-D;

Minimal compromise on performance ≡ stiffness-to-weight
trade-off.
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Virtual skeleton approach – briefly

Main idea: allowable directions defined on a discrete line model
(truss...) → virtual scaffold for continuum topology optimization

AM-oriented truss optimization

Topology optimization prioritized on virtual skeleton
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Virtual skeleton approach – briefly

Standard

Truss

Suggested
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Staged construction – balanced cantilever
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Topology optimization for staged construction

Looking at the design of a balanced cantilever bridge:

During construction Final conditions
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Topology optimization for staged construction

min
ρ

f (ρ) = fTf uf +

NSTG∑
n=1

θnf
T
n un

s.t.: g(ρ) =

NE∑
e=1

ρeve − V ? ≤ 0

0 < ρmin ≤ ρe ≤ 1, e = 1, ...,NE

with: Kf uf = ff

Knun = fn n = 1, ...,NSTG

Remarks:

We have NSTG construction stages, with unique stiffness matrices,
boundary conditions and loads

We use standard topology optimization “ingredients”: SIMP,
density filter, MMA, Heaviside projection (if necessary)
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Topology optimization for staged construction

Results of the staged construction approach, balanced cantilever bridge:

stages optimized layout comments

N/A baseline design

low θ, volume active

high θ, volume inactive

low θ, volume active

high θ, volume inactive
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Topology optimization for staged construction

Results of the staged construction approach, balanced cantilever bridge:
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Additive manufacturing as “staged construction”
We see AM as a “layered” or “sliced” construction process:
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Preliminary results – half MBB

slicing fractions fTf uf NSVF optimized layout
non-supported

regions

N/A 72.8921 0.0061

[80, 120] /160 80.7397 0.0028

[50, . . . , 150@20] /160 76.4435 0.0044
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Preliminary results – cantilever

slicing fractions fTf uf NSVF optimized layout
non-supported

regions

N/A 56.4807 0.0046

[80, 100, 120] /160 60.8694 0.0021

[80, 90, 100, 110] /160 59.4172 0.0018
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Preliminary results – half MBB

slicing fractions fTf uf NSVF optimized layout
non-supported

regions

N/A 72.8921 0.0112

70/80 85.0811 0.0027

[70, 80] /80 81.0217 0.0061
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Preliminary results – 3-D cantilever

Standard Sliced approach
at Zmax/2
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Conclusions and outlook

• Simple approach, uses standard top-opt procedures

• Possibility for control: slicing pattern, penalties θn
• Straightforward implementation in pixel/voxel based top-opt, can

extend to account for actual manufacturing process

• Buildability not 100% guaranteed, some post-processing may be
required

• Compromise on optimized performance

• Cost of multiple simulations per design cycle

• No need for black-and-white convergence??? revival of gray
material???

Thank you for listening
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