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Context – AATiD consortium

Develop advanced technologies for design and 3-D printing of optimized
complex aero-structures made of Titanium alloys, Ti-6Al-4V

Detailed goals:

Identify cost-effective parts, material qualification, optimize
process, simulate process, welding of printed parts, ...

Use topology optimization to achieve superior aero-structures
design compared with traditional design, in terms of weight, cost
and performance;

Embed printing technologies’ limitations in the structural
design process.
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Coupling TopOpt and Titanium AM
Airbus A320 nacelle hinge bracket [Tomlin and Meyer, 2011]:

IAI Gulfstream G250 gooseneck hinge [Muir, 2013]:
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Challenges in AM

Additive manufacturing typically requires extensive support material
to prevent curling and distortion:

Support overhang / inclination angle;

Support horizontal bridging distances;

Improve heat transfer.

Support material counter-balances
achievements of optimal design:

Longer build time, more material usage;

Extensive rework required for removing
supports;

Difficulties in clearing supports in internal
holes;

Compromise on stiffness-to-weight.

Support structure (Materialise)

Topology optimization for additive manufacturing 4



Challenges in AM

Additive manufacturing typically requires extensive support material
to prevent curling and distortion:

Support overhang / inclination angle;

Support horizontal bridging distances;

Improve heat transfer.

Support material counter-balances
achievements of optimal design:

Longer build time, more material usage;

Extensive rework required for removing
supports;

Difficulties in clearing supports in internal
holes;

Compromise on stiffness-to-weight.

Support structure (Materialise)

Topology optimization for additive manufacturing 4



Dealing with overhang limitations

Necessary to embed the support requirement into the optimization

Post-process an optimized design?

Optimize for no-support?

Optimize for minimum support?

Optimize the build direction?

Post-process via geometry
[Leary et al., 2014] →
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Current research

Goal: Derive a procedure that can account
for a given overhang limitation

Desired features:

Can generate designs with no support;

Can generate designs with limited support;

To be investigated in 2-D but extendable to 3-D;

Minimal compromise on performance ≡ stiffness-to-weight
trade-off.
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Virtual skeleton approach

Main idea: allowable directions defined on a discrete line model
(truss...) → virtual scaffold for continuum topology optimization

Standard TopOpt

AM-oriented truss
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Mapping truss-continuum
The work is inspired by several recent ideas:

[Norato et al., 2015], [Zhang et al., 2016]

Optimize size & location of bars, project to continuum

OA, 2013

Truss-continuum filter to enforce bars to be covered
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Mapping truss-continuum

Initial trials:

Define compatible truss ground structure with allowable bars only

Truss bar areas a are the design variables, mapped to continuum

domain by super-gaussian function, ρj =
∑

i e
−
(

2·dij
ai

)N

Response evaluated on continuum with density ρ(a)

Results not encouraging...
basically a truss-looking design
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Suggested procedure (1)

1 Define continuum design domain, generate standard ground
structure

2 Define AM-compatible ground structure: suppress excessive
overhang bars and horizontal bars

3 Optimize truss using well-established procedures: min. c s.t. V

→ obtain bar areas {a}
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Suggested procedure (2)
4 Map optimized truss bars to prioritized continuum → matrix [T]

• Distance between element
and truss bar ≤ dmax

• Distance between element
and truss bar > dmax

• Element can anchor the
bar to the printing bed

[T] depends on sizes of {a} [T] depends on topology of {a}
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Suggested procedure (3)

5 Run standard topology optimization: min. c s.t. V :

Use [T] as an initial guess
Define priority to material points coinciding with the mapped truss:

Ee = (Emin + ρ̃pe (Emax − Emin))(1 + Te(α+ − 1))

Optionally, penalize void regions that coincide with the mapped
truss:

Ee = (Emin + ρ̃pe (Emax − Emin))(1 + Te(α+ − 1))

− (1− ρ̃pe )(Emax − Emin)Teα
−
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Preliminary results
Simply supported beam, printing -Y

dmax = 2, α+ = 10, α− = 10, 45◦ overhang

[T] ρ̃ compliance ⇑

15%

24%

19%

21%
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Preliminary results
Simply supported beam, symmetric half, printing -X

dmax = 2, α+ = 10, α− = 10, 45◦ overhang

[T] ρ̃ compliance ⇑

6%

7%

12%

15%
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Preliminary results
Cantilever beam, baseline design

printing -Y

printing -X

Topology optimization for additive manufacturing 16



Preliminary results
Cantilever beam, various options

options [T] ρ̃ compliance ⇑

-X, α+ = 10,
α− = 10

5%

-X, α+ = 5,
α− = 0

3%

-Y, α+ = 10,
α− = 10

19%

-Y, α+ = 5,
α− = 0

7%
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Conclusions

• Simple approach, based on two standard procedures

• Possibility for control: truss ground structure, dmax , penalties
α+, α−, overhang angle, ...

• Easy to define and compare printing directions

• Buildability not 100% guaranteed, some post-processing may be
required

• Compromise on optimized performance

• 3-D needs some thought...

Thank you for listening
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Sliced approach
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