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Context — AATID consortium

Develop advanced technologies for design and 3-D printing of optimized
complex aero-structures made of Titanium alloys, Ti-6Al-4V J

Detailed goals:

o ldentify cost-effective parts, material qualification, optimize
process, simulate process, welding of printed parts, ...

@ Use topology optimization to achieve superior aero-structures
design compared with traditional design, in terms of weight, cost
and performance;

e Embed printing technologies’ limitations in the structural
design process.
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Coupling TopOpt and Titanium AM
Airbus A320 nacelle hinge bracket [Tomlin and Meyer, 2011]:
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Airbus A320 nacelle hinge bracket [Tomlin and Meyer, 2011]:
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Challenges in AM

Additive manufacturing typically requires extensive support material
to prevent curling and distortion:

@ Support overhang / inclination angle;
@ Support horizontal bridging distances;

@ Improve heat transfer.
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Challenges in AM

Additive manufacturing typically requires extensive support material
to prevent curling and distortion:

@ Support overhang / inclination angle;
@ Support horizontal bridging distances;

@ Improve heat transfer.

Support material counter-balances
achievements of optimal design:

@ Longer build time, more material usage;

@ Extensive rework required for removing
supports;

@ Difficulties in clearing supports in internal Support structure (Materialise)

holes;

@ Compromise on stiffness-to-weight.

Topology optimization for additive manufacturing



AN MISS.“R'??
Dealing with overhang limitations

Necessary to embed the support requirement into the optimization J

Post-process an optimized design?
Optimize for no-support?

Optimize for minimum support?

Optimize the build direction?
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Dealing with overhang limitations

Necessary to embed the support requirement into the optimization J

Post-process an optimized design?
Optimize for no-support?

Optimize for minimum support?

Optimize the build direction?

Post-process via geometry
[Leary et al., 2014] —
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PN MISS."R'?'?
Dealing with overhang limitations

Necessary to embed the support requirement into the optimization ]

@ Post-process an optimized design?
@ Optimize for no-support?
@ Optimize for minimum support?

@ Optimize the build direction?

Use projection method to require support
in specified angle [Gaynor, 2015] —
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Current research

Goal: Derive a procedure that can account
for a given overhang limitation

Desired features:
o Can generate designs with no support;
o Can generate designs with limited support;
@ To be investigated in 2-D but extendable to 3-D;
°

Minimal compromise on performance = stiffness-to-weight
trade-off.
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Virtual skeleton approach

Main idea: allowable directions defined on a discrete line model
(truss...) — virtual scaffold for continuum topology optimization

Standard TopOpt
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Mapping truss-continuum
The work is inspired by several recent ideas:

[Norato et al., 2015], [Zhang et al., 2016]

Optimize size & location of bars, project to continuum

a b W 7 i“ gr\\zs% @

rrrrrrrr

OA, 2013
Truss-continuum filter to enforce bars to be covered
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Mapping truss-continuum

Initial trials:
@ Define compatible truss ground structure with allowable bars only

@ Truss bar areas a are the design variables, mapped to continuum

_ 2-djj
domain by super-gaussian function, p; =), e ( % )

@ Response evaluated on continuum with density p(a)
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Mapping truss-continuum

Initial trials:
@ Define compatible truss ground structure with allowable bars only

@ Truss bar areas a are the design variables, mapped to continuum

_(2d
domain by super-gaussian function, p; =), e ( % )
@ Response evaluated on continuum with density p(a)

Results not encouraging...
basically a truss-looking design

Topology optimization for additive manufacturing 10



Suggested procedure (1)
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© Define continuum design domain, generate standard ground

structure

@ Define AM-compatible ground structure: suppress excessive
overhang bars and horizontal bars

'

?

W,
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Suggested procedure (2)
@ Map optimized truss bars to prioritized continuum — matrix [T]

e Distance between element ]
and truss bar < d,ax 7

e Distance between element ./
and truss bar > dpax

Element can anchor the =
bar to the printing bed

[T] depends on sizes of {a} [T] depends on topology of {a}

Topology optimization for additive manufacturing 12
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© Run standard topology optimization: min. ¢ s.t. V:

e Use [T] as an initial guess
e Define priority to material points coinciding with the mapped truss:

Ee = (Emin + P2(Emax — Emin))(1 + Te(05+ -1))
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© Run standard topology optimization: min. ¢ s.t. V:

e Use [T] as an initial guess
e Define priority to material points coinciding with the mapped truss:

Ee = (Emin + P2(Emax — Emin))(1 + Te(Oé+ -1))

Topology optimization for additive manufacturing 13



-~ H

Technion

A gl BN M Israel Institute of
Technology

Suggested procedure (3)

© Run standard topology optimization: min. ¢ s.t. V:
e Use [T] as an initial guess
e Define priority to material points coinciding with the mapped truss:
Ee = (Emin + ﬁg(Emax - Emin))(]- + 7—6(04Jr - 1))

e Optionally, penalize void regions that coincide with the mapped
truss:

Ee = (Emin + ﬁg(Emax - Emin))(1 + Te(@+ - 1))
- (1 - ﬁg)(Emax - Emin) Tea_

Topology optimization for additive manufacturing



Preliminary results

dmax = 2, a™ =10, a~ = 10, 45° overhang

[T]
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Preliminary results

dmax = 2, a™ =10, a~ = 10, 45° overhang
[T] p

compliance

6%

7%

12%

15%
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Preliminary results

printing -Y

printing -X
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Preliminary results

options

-X, at =10,
a” =10

Y, at =5,
a” =0
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Conclusions

e Simple approach, based on two standard procedures

e Possibility for control: truss ground structure, dpmax, penalties
at, a~, overhang angle, ...

e Easy to define and compare printing directions

Topology optimization for additive manufacturing 18
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required

e Compromise on optimized performance
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Conclusions

e Simple approach, based on two standard procedures

e Possibility for control: truss ground structure, dpmax, penalties
at, a~, overhang angle, ...

e Easy to define and compare printing directions

e Buildability not 100% guaranteed, some post-processing may be
required

e Compromise on optimized performance

3-D needs some thought...

Thank you for listening
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Sliced approach

Figure 10: MBB beam model Figure 11:
weight model

AN AN

Figure 13: One slice, § = 1.3¢™°, f = 257

Vertical self- Figure 12: Horizontal self-
weight model

Figure 14: One slice, § = 2¢=5, f =228
ANL NN

Figure 10: 6 =0, f = 214

LN

Figure 20: Example of design produced with ‘horizontal’ printing

Figure 15: Five slices, = 1375, f = 268 Figure 16: Five slice, 6 = 2¢=5, f =227

Figure 17: Ten slices, § = 1.3¢7°, f = 331 Figure 18: Ten slice, § = 275, f =231
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