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1 Abstract

This article presents a computational approach that facilitates the efficient solution of 3-D struc-
tural topology optimization problems on a standard PC. Computing time associated with solving
the nested analysis problem is reduced significantly in comparison to other existing approaches.
The cost reduction is obtained by exploiting specific characteristics of a multigrid preconditioned
conjugate gradients (MGCG) solver. In particular, the number of MGCG iterations is reduced by
relating it to the geometric parameters of the problem. At the same time, accurate outcome of the
optimization process is ensured by linking the required accuracy of the design sensitivities to the
progress of optimization. The applicability of the proposed procedure is demonstrated on several
2-D and 3-D examples involving up to hundreds of thousands of degrees of freedom. Implemented
in MATLAB, the MGCG-based program solves 3-D topology optimization problems in a matter
of minutes. This paves the way for efficient implementations in computational environments that
do not enjoy the benefits of high performance computing, such as applications on mobile devices
and plug-ins for modeling software.

Keywords: Topology optimization, preconditioned conjugate gradients, multigrid.

2 Introduction

In typical structural topology optimization procedures, the computational effort involved in re-
peated solution of the analysis equations dominates the computational cost of the whole process.
This motivates the search for efficient approaches aimed at reducing the computational effort
invested in the analysis. The current contribution aims primarily at deriving computational proce-
dures for performing 3-D topology optimization on a standard PC within high-level programming
environments such as MATLAB. To ensure that the approach can be easily ported to other pro-
gramming environments, the suggested code is based almost entirely on the SuiteSparse library [18].
This general approach paves the way for integrating 3-D topology optimization in CAD software,
e.g. within the Grasshopper-Rhino TopOpt component released recently; as well as in applications
for mobile devices such as the TopOpt app [2]. Even though large-scale parallel procedures are not
of primary concern in this work, the general form of the iterative solver presented here is indeed
also applicable to large-scale topology optimization problems.

Reduction of computational effort in topology optimization has been approached from various
standpoints over the past few years. One of the major research trajectories examines the application
of multiple computational scales and resolutions, thus avoiding the inherent high cost of solving
sequences of finite element analyses on a fine mesh. Kim and Yoon [25] suggested the concept
of multi-resolution multi-scale topology optimization (MTOP) where optimization is performed
while progressively refining the grid. They used a wavelet-based parametrization of the density
distribution, as was also suggested by Poulsen [30] in the context of regularizing topological design.
The utilization of wavelet bases was later extended by Kim et al. [23] who applied adaptive wavelet-
Galerkin analysis to multi-scale topology optimization. Stainko [35] proposed a multilevel scheme
where optimization is first performed on a coarse grid, which is then adaptively refined in the
interface between solid and void. Ultimately, a fine-resolution design is achieved for a relatively
low computational expense. Using this strategy, it is not clear whether fine features that did not
exist in the coarse design can emerge in the finer levels. More recently, another multi-resolution
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topology optimization scheme was suggested, where the density distribution is realized on a finer
scale than the displacements [28, 29].

Other approaches for saving computational cost include reducing the number of design variables
by using adaptive design variable fields [21]; generating sets of Pareto-optimal topologies within a
single optimization process [37]; and adaptive reduction of the number of design variables based on
the history of each variable during optimization [24]. However, the current study is mostly related
to contributions focusing solely on reducing the cost involved in repeated solution of the nested
analysis equations, either by recycling of Krylov subspaces [42]; integrating approximate reanalysis
[4, 13, 44, 6]; and truncating iterative solutions [5, 3].

It was observed in some of the recent investigations that accurate results of the optimization
process can be achieved even if the analysis equations are not solved to full accuracy [e.g. 42, 5, 3].
This observation is based primarily on numerical experimentation and providing comprehensive
mathematical argumentation is still a challenge for future research. Results presented here demon-
strate again that approximate solution of the analysis equations can yield accurate outcome of the
optimization. Several advancements with respect to previous studies are presented, that result in
significant reduction in computational effort. We continue to use the framework of Krylov sub-
space iterative solvers, particularly the Preconditioned Conjugate Gradients method (PCG), but
with a multigrid V-cycle applied as a preconditioner. The resulting procedure, typically termed
MGCG (MultiGrid Conjugate Gradients) is nowadays a well-established technique and was shown
to provide mesh-independent convergence as well as good parallel scalability [39, 8].

This article focuses on the effective utilization of MGCG for the purpose of solving the nested
analysis equations arising in topology optimization problems, a topic which has yet to be explored.
It is shown that straightforward implementation of MGCG indeed leads to better performance
compared to other preconditioning techniques. More importantly, further reduction in computa-
tional cost is possible by exploiting specific characteristics of MGCG and by linking the accuracy
of the MGCG analysis to the progress of optimization. We show that MGCG is unique due to
the relations between the required number of iterations and the geometric parameters of the prob-
lem - namely the number of grid levels and the filter size. Furthermore, we propose to relate the
tolerance of the iterative solution of the analysis equations to the progress of optimization. This
means that the analysis is solved to full accuracy only when the optimization problem approaches
a solution, whereas approximations are sufficient in earlier stages as long as they do not hamper
the progress towards an optimum. In other words, a ‘semi-nested’ approach is taken: The analysis
is indeed solved separately from the optimization but the effort invested in it, and consequently
the accuracy achieved, are both linked to the progress of optimization.

Up to date, we are not aware of any publications concerning the utilization of MGCG for solv-
ing the analysis equations arising in topology optimization problems. This might be related to
the expected difficulty of multigrid methods to deal with high contrast in coefficients - an inher-
ent property due to the desired solid-void (or 1-0) density distribution. Nevertheless, multigrid
solvers were proposed for solving the complete Karush-Kuhn-Tucker (KKT) system of equations
corresponding to topology optimization problems [27, 36]. Another application arises when follow-
ing the phase field approach to topology optimization, where a multigrid method was utilized for
solving the Cahn-Hilliard equations [43].

Another alternative for improving the solution timing is the employment of parallel computing
for solving both the state problem as well as the optimization [1]. Such a parallelization approach
leads to very high parallel efficiency, i.e., good utilization of a large-scale parallel computer. How-
ever, good scalability is irrelevant if the solution method is very slow. Our main interest is in
decreasing the total time for a given set of computational resources. Therefore, multigrid solvers
are excellent candidates as they are parallelizable and numerically scalable, i.e., the solution time
is proportional to the problem size. Outline of the main challenges for multigrid parallelization
can be found in [17] and recent reports on solving very large-scale problems on one of the fastest
supercomputers can be found in [9, 10]. In the current study, the main focus is on demonstrating
and discussing the applicability of MGCG as a solver of the linear analysis equations in topology
optimization. Reporting the challenges of parallel implementation is left for future work.

The article is organized as follows. The optimization problem formulation and standard im-
plementation of the multigrid-CG procedure are briefly discussed in Section 3. The heart of the
article is in Section 4, where observations based on numerical experimentation and the suggested
approximate approach are presented. This is followed by several examples involving 3-D optimized
designs in Section 5. Finally, discussion and conclusions are given in Section 6.
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3 Problem formulation and computational framework

For demonstrative purposes we address classical problems in structural topology optimization
involving linear elasticity, namely minimum compliance and force inverter problems. These are
hereby reviewed briefly for the sake of completeness. We follow the density-based approach [11]
and apply the modified SIMP interpolation scheme relating density to elastic stiffness [34]. This
does not imply any loss of generality - various topology optimization approaches share the same
basic formulation and can equally benefit from the advancements discussed in this article. The
considered optimization problem has the following generic form

min
ρ
φ(ρ) = lTu

s.t.:

N∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1 e = 1, ..., N

with: K(ρ)u = f (1)

where ρ represents the density distribution; K(ρ) is the stiffness matrix; f is the load vector; u is
the displacements vector; ve is the element volume; and V is the total available volume. In each
finite element the elastic stiffness is given by the modified SIMP interpolation rule

E(ρ) = Emin + (Emax − Emin)ρp

where Emax is typically 1; Emin is a small number; and the penalty power p is typically set to 3.
The ratio between Emax and Emin will be referred to later as the contrast of the layout because it
controls the sharpness of the stiffness distribution for a given 0-1 topological layout.

Minimum compliance optimization is obtained by setting l ≡ f while for the force inverter
problem l is a vector with the value of 1 at the output degree of freedom and zeros otherwise.
Design sensitivities are computed by the adjoint method. For both cases, the sensitivity of the
objective with respect to a particular element density is given by

∂φ

∂ρe
= −uT ∂K

∂ρe
u

where K(ρ)u = l, thus for the compliance problem u ≡ u. Using the computed gradients of the
objective and the constraint, the problem can be solved by various means. We apply either an
optimality criteria (OC) procedure or a first-order nonlinear programming method - MMA [38].
Mesh-independence and regularization are treated by either sensitivity filtering [32, 33] or density
filtering [16, 14].

For demonstrating the performance of MGCG-based procedures we utilize three test cases: 1)
Minimum compliance topology optimization of a beam with a point load, typically referred to as
the MBB-beam, with various mesh resolutions; 2) Minimum compliance topology optimization of
a cantilever beam, with a single point load at the middle of the free face; and 3) Maximum output
displacement of a force inverter, see Figure 1. For the cantilever beam, The FE mesh resolution
is 160×80; the volume fraction is 0.4; and the modified SIMP penalty is 3.0. The same mesh and
penalty are used also for the force inverter, but with a volume fraction of 0.3. Within the multigrid
V-cycle, we apply a single damped Jacobi smoothening cycle with ω = 0.8. We use up to four
multigrid levels: According to the specified number of levels, a direct solve is performed on either
80×40, 40×20 or 20×10 grid. With 3-D applications in mind, it is clear that the coarsest level
should be chosen such that a direct solve can be performed efficiently.

3.1 Preconditioned Conjugate Gradient method

The focus here is on the effective solution of the linear system of equations Ku = f arising from a
finite element discretization of the state problem. The stiffness matrix is large, sparse and positive
definite. The solution u can be obtained using either direct methods [e.g. 18] or iterative methods
[31]. For full matrices, the computational cost of direct Cholesky decomposition is of O

(
n3
)
, while

for sparse matrices direct methods such as nested dissection require O
(
n3/2

)
operations, where

n is the size of the stiffness matrix [18]. For small problems, particularly in 2-D, direct solvers
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Figure 1: Demonstrative test cases. Left: Minimum compliance topology optimization of a 2-D
cantilever beam. Right: Maximum output displacement of a 2-D force inverter.

are often preferable due to their robustness. However, solution time and memory requirements
become prohibitive for 3-D problems as well as for large-scale 2-D. For these cases, the sparsity
of the stiffness matrix results in an inexpensive matrix vector product operation which can be
effectively utilized by iterative solution algorithms.

For positive definite system matrices the iterative method of choice is the classical Conjugate
Gradient method [22]. It is a descent method which minimizes the functional F (u) = ‖Ku−f‖K−1

and requires only a single matrix vector multiplication per iteration. Theoretically the method can
find the solution in less than n iterations and the convergence rate is given by

‖u− uk‖K−1 ≤ ‖u− u0‖K−1

(√
κ− 1√
κ+ 1

)k
(2)

where κ is the condition number of the matrix K and k is the iteration number. For κ >> 1 the
convergence is very slow. In practice convergence is ensured and accelerated by preconditioning the
linear system with a matrix or an operator M for which κ

(
M−1K

)
<< κ (K). The construction of

an effective preconditioner or the action of M−1, should cost as little as possible and the condition
number κ

(
M−1K

)
should be close to one and independent of n. Classical preconditioners such

as incomplete Cholesky factorization, diagonal scaling or Factorized Sparse Approximate Inverses
(FSAI) cannot provide a mesh independent convergence rate and often the preconditioned system
is contrast-dependent. Therefore, their utilization should be limited in comparison to modern,
numerically scalable multilevel/multigrid techniques [e.g. 41].

3.2 Multigrid method

Multigrid (MG) is a multilevel iterative method originally developed for solving discretized ho-
mogeneous elliptic problems. Nowadays it constitutes a family of methods that can be used to
solve also inhomogeneous and non-elliptic partial differential equations. MG is considered numer-
ically scalable as it can provide the solution of a linear system for a computational cost of O (n).
Such optimal performance is achieved by employing two complementary processes: Smoothing and
coarse-grid correction. The smoothing process reduces the oscillatory error in the solution and is
typically based on a stationary iterative method such as Gauss-Seidel or Jacobi. The smoother
removes the high frequency components of the residual so that smoothed low order components
can be effectively approximated on a coarser grid. The coarse grid correction procedure trans-
fers information to a coarser grid through restriction, solves the coarsened system of equations
and transfers back the solution to the fine mesh through prolongation (or interpolation). Coarse
grid correction eliminates the slowly varying error components which cannot be eliminated by the
smoothing operation.

The basic two-grid MG algorithm is shown in Algorithm 1. The prolongation P : Rnc → Rn

maps the coarse grid solution to the fine grid and is represented by a n× nc sparse matrix, where
nc is number of the degrees of freedom utilized for defining the solution on the coarse grid. The
prolongation matrix is obtained by using standard finite element interpolation on the coarse mesh
for determining the weight of the fine grid nodes. The restriction maps the fine grid solution
to the coarse grid and is here selected to be the transpose of the prolongation, i.e. PT. The
coarse operator Kc = PTKP is obtained by Galerkin projections. The presented algorithm differs
slightly from the so-called geometric multigrid formulation and more details can be found in the
literature [e.g. 41, 40]. Defining a set of nested coarse discretizations T (1) ⊂ T (2) ⊂ · · · ⊂ T (L)
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and solving the coarse system recursively by re-applying the two-level algorithm on each coarse
level 1, 2, . . . ,L results in the so-called V-cycle MG algorithm. For smooth problems the algorithm
can be utilized either as a stand alone solver or as a preconditioner in the PCG method where
M−1 is replaced with the operator rk → MG (0, rk,K) where rk = f −Kuk is the system residual
at a certain PCG iteration k. When using a Jacobi smoother, the MG algorithm results in a
symmetric preconditioner, which is a requirement for being applied in PCG [41]. The construction
of the algorithm ingredients, namely the smoother, the interpolation operator and the restriction
operator, does not require extensive computations. The MG preconditioner is spectrally equivalent
to the system matrix K and the convergence rate of the resulting MGCG algorithm is independent
of the mesh size. We note that the convergence rate does depend on the contrast in the system
properties [15] and the development of contrast-independent multilevel preconditioners is an active
research topic. Preliminary results in topology optimization were reported recently [26]. The
application in multigrid settings will be reported in following articles.

Algorithm 1 Two-grid algorithm u = MG (u, f ,K)

Pre-smooth u = u + S−1 (f −Ku)
Coarse grid correction - solve Kcuc = PT (f −Ku)
Interpolate u = u + Puc

Post-smooth u = u + S−1 (f −Ku)
return u

3.3 MGCG implementation notes

We now turn to review the multigrid-CG (MGCG) implementation that is utilized in this study
for solving the structural analysis equations. The developed code is based on the 88-line MATLAB
code [7], which has been further extended to 3-D for some of the examples presented later in the
article. For improving the transparency of the presentation, a 2-D MATLAB code for MGCG-
based minimum compliance topology optimization is appended. The code includes all functions
that are required for performing MGCG, according to a few user-defined parameters. The main
change in comparison to the 88-line code is the replacement of the linear solver by MGCG.

The implementation can be separated logically into two main parts: A preparation phase
and an optimization phase. During the preparation phase the prolongation matrix PL for each
coarse level L is assembled. Even though the assembly cost for the prolongation operators can
become relatively large, they are constructed only once and re-utilized in each optimization cycle.
Therefore the total increase of the computational cost due to the preparation phase is negligible.
In the MATLAB code, the prolongation operators are named Pu and are generated in lines 19-22,
with the actual function named Prepcoarse in lines 165-192.

The optimization phase is entirely based on the 88-line topology optimization code with the
linear solver replaced by the MGCG iterative solver. The MGCG solver is essentially a PCG
procedure [e.g. 31] with a multigrid V-cycle as a preconditioner. The multigrid smoother S−1 (as
in Algorithm 1) is based on the damped Jacobi method which can be stated as S−1 = ωD−1,
where ω is a damping factor and D is the diagonal of the matrix K. In the MATLAB code, the
V-cycle is called within the MGCG iterations in line 114. The actual function VCycle appears in
lines 135-149, followed by the damped Jacobi smoothing function.

For demonstrating the performance of the standard MGCG we present the following example,
where we solve the FE analysis systems corresponding to the optimized layouts of MBB-beams in
various mesh resolutions. For a fair comparison, we examine layouts generated with three different
grids using an equal physical filter size: 1) 240×80 mesh, r = 1.5; 2) 480×160 mesh, r = 3.0;
and 3) 960×320 mesh, r = 6.0. Furthermore, the coarsest grid level where MGCG performs
a direct solve is the same for the three cases - namely a 30×10 grid. Convergence of MGCG
is shown to be mesh-independent, meaning the same number of MGCG iterations is required
regardless of the resolution of the finest grid. This is a significant advantage when compared to
other preconditioning techniques. As expected, convergence of MGCG depends on the contrast of
the stiffness distribution. Nevertheless, the procedure does indeed converge even for high-contrast
layouts, and it appears to be insensitive to contrast once a certain value is exceeded.

The number of MGCG iterations required to achieve 10−10 accuracy (in terms of residual

forces, ‖f−Kuk‖
‖f‖ ) is plotted versus the problem size (in terms of number of DOF) in Figure 2.
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For each mesh resolution, four FE systems are solved corresponding to various contrasts of the
stiffness distribution Emax/Emin. The performance of MGCG is compared to that of PCG with
an incomplete, zero fill-in Cholesky preconditioner (denoted IC(0) PCG). It can be seen that
the number of MGCG iterations is significantly smaller than with IC(0) and it does not increase
when refining the mesh. When increasing the contrast from 1 (corresponding to uniform material
distribution) to 103 a significant increase in the number of MGCG iterations is observed; but
further increase of the contrast has a minor effect. The IC(0) preconditioner exhibits a clear mesh-
dependence: Refining the FE mesh results in an increase in the number of PCG iterations. With
respect to contrast dependence, incomplete preconditioning appears to behave similar to MGCG.
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Figure 2: The number of PCG iterations required to achieve 10−10 accuracy in terms of resid-
ual forces for various mesh resolutions and contrasts Emax/Emin. Results correspond to the FE
analysis of the optimized layouts of MBB-beams on 240×80, 480×160 and 960×320 grids. MGCG
requires many fewer iterations and exhibits mesh-independent convergence while IC(0) does not.

4 Approximate approach based on MGCG solver

In addition to the improved efficiency resulting from utilizing the MGCG solver, we also suggest
an approximate scheme that can further reduce computational burden. The approximate approach
is derived primarily from extensive numerical experience with MGCG as the analysis solver for
nested structural topology optimization problems. According to our experiments, it is evident that
only a few MGCG iterations are required for achieving the “correct” optimization result - meaning
the same layout and objective value that are obtained with an accurate solution of the analysis
equations. This is not very surprising considering recent work with approximate procedures in
topology optimization [4, 5, 3]. However, MGCG is unique due to the relations between the
required number of iterations and the geometric parameters of the problem - namely the number
of grid levels and the filter size. In the following, these relations will be discussed based on various
test cases.

In the standard formulation (1) it is assumed that the structural analysis equilibrium equations
are solved accurately, which is always the case if a direct solver is employed. When utilizing an
iterative solver, one can choose to terminate the process after an arbitrary number of iterations
and thus obtain an approximation of the solution

K(ρ)ũ ≈ f .

The error associated with ũ can be taken into account by means of consistent sensitivity analysis
[4, 5, 6]. Another strategy is to compute the design sensitivities as if the analysis equations are
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solved accurately, meaning that the error is transferred further to the design sensitivities

∂φ

∂ρe
≈ −ũ

T ∂K

∂ρe
ũ (3)

where ũ is an approximation of the adjoint vector u, obtained by an iterative solver in the same
manner as ũ. According to recent experience, this strategy tends to yield better optimized perfor-
mance than the consistent sensitivity approach [6].

With the goal of formulating an efficient yet reliable approximate procedure, two central re-
quirements are considered: 1) A minimum number of MGCG iterations should be imposed, with
relation to the geometric parameters of the problem - the number of grid levels and the filter size;
and 2) The stopping criterion for MGCG should be related to the progress of optimization in order
to avoid local minima. These two aspects are addressed in the following.

4.1 Imposing a minimum number of MGCG iterations

A minimum number of MGCG iterations is imposed, essentially in order to ensure reasonable
error reduction throughout the fine mesh. In its basic (non-preconditioned) form, the error in
CG propagates through a single finite element in every iteration. For this reason, “long” domains
are less preferable than equilateral domains - computing an accurate solution will require more
iterations the further the error needs to “travel”. In the context of multigrid, one would require
that the error propagates throughout the fine grid, while the solution (the preconditioning step)
on the coarsest grid level is assumed to be accurate. The introduction of a filter improves this
situation, because the filter operation has a smoothening effect on all fine grid points within the
filtered domain. Therefore, a heuristic rule for a minimum number of MGCG iterations will ensure
that the error is propagated by MGCG from the coarse grid points into the filtered domain.

Three demonstrative situations with various numbers of grid levels and filter sizes are displayed
in Figure 3. The purpose is to provide a graphical explanation for the tendencies observed in
various numerical experiments, and then to derive a heuristic rule for the minimum number of
MGCG iterations to be performed. With three grid levels (every coarse-grid element represents
4-by-4 fine grid elements) and a small filter size (r = 1.5), only 1 MGCG step is necessary in order
to propagate into the filtered domain. With four grid levels (every coarse-grid element represents
8-by-8 fine grid elements) and a large filter size (r = 3), after two MGCG steps the coarse solution
will propagate into the filtered domain; whereas for a small filter size (r = 1.5) three MGCG steps
are required. Based on geometric relations the minimum number of MGCG iterations is defined as

kmin ≥ 2nl−2 − 1

2
− r√

2
(4)

where nl is the number of grid levels. In three-dimensional cases, the same reasoning leads to the
relation

kmin ≥ 2nl−2 − 1

2
− r√

3
. (5)

We note that this choice of kmin is based on a rather simplistic analysis of the situation, while in
practice several additional factors play a role in determining the quality of the solution obtained by
MGCG. On the one hand, the coarse grid solution is gradually prolongated and smoothed within
intermediate grid levels. This means, that it is possible to obtain sufficient accuracy even with
fewer MGCG iterations, as observed in some examples described in the following. On the other
hand, propagation of the error itself does not ensure convergence of MGCG - in PCG procedures
this is typically determined according to the relative norm of the residual forces. Nevertheless, it
will be shown that by requiring a minimum number of MGCG iterations and at the same time
imposing a relaxed convergence criterion on MGCG, accurate outcomes of the optimization can be
achieved efficiently.

The argument in favor of imposing a minimum number of MGCG iteration is supported by
the following experiment where we solve the cantilever beam problem. The results with 2-4 MG
levels, sensitivity filtering with r = 1.5, contrast Emax/Emin = 109 and OC optimization are
presented in Table 1. In all experiments, we run a maximum number of 500 design iterations
- the stopping criterion that requires a maximum change of 10−3 in all design variables is not
achieved. The reference accurate solution of the equilibrium equations is reached by enforcing a
tolerance of 10−10 on the relative force residual. In general, it can be seen that only very few
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Figure 3: The effect of the number of grid levels and filter size on the number of MGCG iterations
performed until the coarse-grid solution initially propagates into the filtered domain. Left: 3 grid
levels, r = 1.5, 1 iteration; middle: 4 grid levels, r = 3, 2 iterations; right: 4 grid levels, r = 1.5, 3
iterations.

(up to 3) MGCG iterations are necessary for achieving an accurate optimization outcome. Quite
surprisingly, even when 4 MG levels are used - meaning that small features defined by the filter size
are not be captured on the coarse level - only small errors are exhibited with 1-5 MGCG iterations.
As expected, fewer iterations are required if fewer MG levels are used, because the coarse-grid
representation is more accurate. Judging by these results, roughly 10% of the MGCG iterations
necessary for full convergence are actually necessary for accurate optimization. All the optimized
layouts are practically identical, some examples are shown in Figure 4.

Table 1: Minimum compliance topology optimization of a 2-D cantilever, sensitivity filtering with
r = 1.5. Results are shown for runs with 1-5 MGCG iterations and 2-4 MG levels. For reference,
the average number of MGCG iterations per cycle and the objective value achieved with accurate
analysis are presented in the bottom row.

4 MG levels, 3 MG levels, 2 MG levels,
OC optimizer OC optimizer OC optimizer

MGCG it. Objective Relative MGCG it. Objective Relative MGCG it. Objective Relative
per cycle value diff. (%) per cycle value diff. (%) per cycle value diff. (%)
1 77.56 +0.13 1 77.43 -0.039 1 77.45 -0.013
2 77.55 +0.12 2 77.46 0.0 2 77.47 +0.013
3 77.45 -0.013 3 77.47 +0.013 3 77.46 0.0
4 77.45 -0.013 4 77.45 -0.013 4 77.46 0.0
5 77.47 +0.013 5 77.46 0.0 5 77.46 0.0
31.5 77.46 accurate 24.6 77.46 accurate 16.4 77.46 accurate

Results from experiments with a larger filter size, r = 3, are presented in Table 2. With both
sensitivity as well as density filtering, using both OC and MMA, only one or two MGCG iterations
are needed in order to reach an accurate result of the optimization. An intuitive explanation is
that with a rather large filter, all structural features are captured relatively accurately on all grid
levels. This means that the preconditioning operation is closer to solving on the fine grid, compared
to the case of a small filter. This is also in line with the sketch in Figure 3: It is expected that
fewer MGCG iterations will be required because of the proximity of the coarse grid points to the
filtered domain. Again, we see potential for significant computational savings simply by reducing
the number of MGCG iterations.

4.2 Relaxed MGCG convergence criterion

In order to maintain sufficient accuracy of the approximation generated by MGCG, it is suggested
to impose a convergence criterion on the approximation of the design sensitivities. Because the
nested approach is followed, the accuracy achieved in the analysis phase influences the solution
of the optimization problem via the design sensitivities. This calls for direct monitoring of the
accuracy of the design sensitivities, as it improves when performing further MGCG iterations. It
is suggested to terminate MGCG once all design sensitivities satisfy the following criteria: (I)
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Figure 4: Optimized layouts corresponding to results from Table 1. From top: 4 MG levels and
1 MGCG iteration; 3 MG levels and 1 MGCG iteration; and accurate solve. Even though only a
single MGCG iteration is performed, small design features that cannot be realized on the coarsest
grid are captured on the fine grid. The optimized layouts are hardly distinguishable and the
difference in compliance does not exceed 0.13%.
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Table 2: Minimum compliance topology optimization of a 2-D cantilever, various optimizers and
various filters with r = 3. Results are shown for runs with 1-3 MGCG iterations, four MG levels
and two different optimizers. For reference, the average number of MGCG iterations per cycle and
the objective value achieved with accurate analysis are presented in the bottom row.

4 MG levels, sensitivity 4 MG levels, density 4 MG levels, density
filter, OC optimizer filter, OC optimizer filter, MMA optimizer

MGCG it. Objective Relative MGCG it. Objective Relative MGCG it. Objective Relative
per cycle value diff. (%) per cycle value diff. (%) per cycle value diff. (%)
1 80.41 -0.062 1 84.41 +0.059 1 83.83 -0.12
2 80.44 -0.025 2 84.36 0.0 2 83.85 -0.095
3 80.46 0.0 3 84.36 0.0 3 83.93 0.0
20.8 80.46 accurate 17.4 84.36 accurate 19.0 83.93 accurate

The relative change between consecutive MGCG cycles is smaller than a certain threshold; (II)
The relative change between consecutive MGCG cycles is smaller than the current error in the
corresponding term of the KKT conditions.

The rationale behind criterion (I) follows previous work on early termination of PCG, based
on the accuracy of the objective function which can be seen as an aggregated measure for the
accuracy of design sensitivities [5]. By “early termination of PCG”, we refer to the situation in
which the standard convergence criterion related to the relative norm of residual forces is not
necessarily satisfied. It was shown that accurate optimization results can be obtained despite the
utilization of such approximations in the analysis phase. In the current work, we take this idea one
step further by directly monitoring all design sensitivities rather than an aggregate measure - thus
imposing a tighter convergence requirement. Referring to a general objective/constraint functional
of the form lTu as in (1) and to the corresponding approximate design sensitivities (3), criterion
(I) has the form ∣∣∣ũT

k
∂K
∂ρe

ũk − ũ
T

k−1
∂K
∂ρe

ũk−1

∣∣∣∣∣∣ũT

k
∂K
∂ρe

ũk

∣∣∣ < η ∀e (6)

where k and k − 1 represent two consecutive MGCG iterations.
The rationale behind criterion (II) is that when the optimization problem is far from a candidate

solution, namely a point satisfying the KKT conditions, a strictly accurate solution of the analysis
equations may not be necessary. This idea is elaborated in the following. The Lagrangian of the
optimization problem (1) is

L = lTu + uT(f −K(ρ)u) + Λ(

N∑
e=1

veρe − V ) +

N∑
e=1

λ+e (ρe − 1) +

N∑
e=1

λ−e (−ρe).

The condition of optimality with respect to a certain element density ρe is

∂L
∂ρe

= −uT ∂K

∂ρe
u + Λve + λ+e − λ−e .

For intermediate densities we then have the classical condition requiring constant mutual energy
density

− uT ∂K

∂ρe
u + Λve = 0. (7)

During the process of topology optimization, some design variables reach one of the bounds while
the rest are determined by the condition (7) which forms the basis for typical optimality criteria
approaches [12]. In case the residual corresponding to (7) is large, it makes sense to relax the
requirement for highly accurate evaluation of the expression −uT ∂K

∂ρe
u. Therefore criterion (II) has

the form ∣∣∣∣ũT

k

∂K

∂ρe
ũk − ũ

T

k−1
∂K

∂ρe
ũk−1

∣∣∣∣ < ∣∣∣∣−uT ∂K

∂ρe
u + Λve

∣∣∣∣ ∀e |0 < ρe < 1 (8)

where the right-hand-side term is based on information from the previous design cycle.
Direct control over the error in the design sensitivities is absolutely necessary in order to avoid

local minimum solutions. This occurs for example when solving the cantilever test case with a
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small density filter r = 1.5 and MMA as the optimizer. As can be seen in Table 3, procedures
with up to 5 MGCG iterations fall into a local minimum, corresponding to the layout in the top
of Figure 5. With 6 or more MGCG iterations these errors are not observed, but in practice we
cannot predict how many iterations will be required - this can only be determined in an adaptive
manner based on error control.

Table 3: Minimum compliance topology optimization of a 2-D cantilever, density filtering with
r = 1.5. Results are shown for runs with 1-8 MGCG iterations, four MG levels and MMA optimizer.
For reference, the average number of MGCG iterations per cycle and the objective value achieved
with accurate analysis are presented in the bottom row.

4 MG levels,
MMA optimizer

MGCG it. Objective Relative
per cycle value diff. (%)
1 79.90 +1.6
3 79.90 +1.6
5 79.92 +1.6
6 78.67 +0.013
8 78.65 -0.013
44.6 78.66 accurate

4.3 Accuracy-efficiency with MGCG solver

We now turn to demonstrate the accuracy and efficiency of the proposed approximate procedure,
where we integrated both requirements: A minimum number of MGCG iterations based on ge-
ometric parameters; and a stopping criterion for MGCG based on the accuracy of the design
sensitivities. As a first example we examine the problem described in Table 3, for which a local
minimum was reached when fewer than 6 MGCG iterations were performed every design cycle. The
purpose is to reach an accurate optimization result with relatively low cost, but without stating
a constant number of MGCG iterations. Instead, we set a minimum number of MGCG iterations
kmin = 3 and require that both criteria (6) and (8) are satisfied. The results are presented in Table
4 for various values of the threshold η.

The efficiency of the proposed approach is clearly demonstrated: Once a tight enough tolerance
is enforced by the parameter η (10−2 and below), accurate outcome of the optimization is achieved
with significant savings in computer time, reflected in the average number of MGCG iterations per
design cycle. The key for such savings is in the adaptive nature of the procedure - more MGCG
cycles are performed when it is necessary to compute relatively accurate design sensitivities. This
adaptive characteristic is demonstrated in Figure 6 where the number of MGCG iterations is
plotted versus design cycles, for various values of η.

The approximate approach can be integrated into topology optimization procedures based not
only on rigorous nonlinear programming, but also on heuristic optimality criteria. For example, we

Table 4: Minimum compliance topology optimization of a 2-D cantilever, density filtering with
r = 1.5, four MG levels and MMA optimizer. Accurate optimization outcome is achieved with up
to 89% savings in the number of MGCG iterations.

4 MG levels, density
filter, MMA optimizer

η
MGCG it. Objective Relative
per cycle value diff. (%)

2 · 10−1 5.12 78.67 +0.013
10−1 7.42 78.65 -0.013
10−2 10.42 78.64 -0.025
10−3 16.76 78.66 0.0

Standard 44.6 78.66 accurate
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Figure 5: Optimized layouts corresponding to results from Table 3. From top: MMA with 5
MGCG iterations, 6 MGCG iterations and accurate solve. Notice the local minimum obtained
when too few MGCG iterations are performed.

Figure 6: MGCG iterations performed throughout the optimization process of a 2-D cantilever
beam, for various threshold values of η. Many MGCG iterations are required in the beginning and
for overcoming the local minimum, otherwise the number is close or equal to the minimum.
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Table 5: Minimum compliance topology optimization of a 2-D cantilever, sensitivity filtering with
r = 1.5, four MG levels and OC optimizer. Accurate optimization outcome is achieved with up to
83% savings in the number of MGCG iterations.

4 MG levels, sensitivity
filter, OC optimizer

η
MGCG it. Objective Relative
per cycle value diff. (%)

2 · 10−1 5.22 77.46 0.0
10−1 5.29 77.46 0.0
10−2 5.72 77.46 0.0
10−3 10.10 77.46 0.0

Standard 31.5 77.46 accurate

Table 6: Maximum output of a 2-D force inverter mechanism, density filtering with r = 3.0, four
MG levels and MMA optimizer. Accurate optimization outcome is achieved with up to 73% savings
in the number of MGCG iterations.

4 MG levels, density
filter, MMA optimizer

η
MGCG it. Objective Relative
per cycle value diff. (%)

2 · 10−1 7.34 -2.268 0.0
10−1 6.34 -2.267 +0.044
10−2 10.35 -2.268 0.0
10−3 13.97 -2.272 -0.18

Standard 23.56 -2.268 accurate

attempt to reproduce the result from the first column in Table 1 which was generated by an OC
procedure. Again we choose kmin = 3 and require that both criteria (6) and (8) are satisfied. As can
be seen in Table 5, all approximate procedures reached the same objective value as obtained when
performing fully accurate analyses, with significant reductions in the number of MGCG iterations.
Furthermore, similar computational effort was required for three different threshold values of η:
2 · 10−1, 10−1 and 10−2. This indicates that MGCG was typically terminated according to (8),
thus supporting our argument that this is a sensible stopping criterion.

The approximate approach is applicable also to other classes of optimization problems which
are not self-adjoint. A typical example is the design of a force inverting mechanism, see Figure 1 for
the problem setup. We use 4 MG levels, contrast Emax/Emin = 106 and 500 MMA optimization
cycles. The density filter radius is r = 3.0 therefore the minimum number of MGCG iterations is
set to 2. The objective value and the number of MGCG iterations per cycle, for different threshold
values η, are given in Table 6. While an accurate analysis requires over 23 MGCG iterations
per design cycle in average, the same outcome can be achieved with roughly 8 MGCG iterations
per design cycle - just above 1/3 of the computational effort. The number of MGCG iterations
performed throughout the optimization is plotted in Figure 7. Again the adaptive characteristics
of the procedure are revealed - the number of MGCG iterations varies according to the progress of
optimization, with a clear peak in the first 40 cycles where a local minimum solution is successfully
avoided.

5 Examples

In order to further establish the validity of the MGCG-based approach to topology optimization, we
hereby discuss the solution of three example problems: Fine-resolution 2-D minimum compliance;
3-D minimum compliance; and 3-D force inverting mechanism. All examples were solved using a
sequential, single-processor MATLAB code running on a standard laptop PC.
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Figure 7: MGCG iterations performed throughout the optimization process of a 2-D force inverter,
for various threshold values of η. Note that convergence of the optimization was achieved in less
than 500 design cycles with the accurate solve, as well as with η = 10−1 and η = 10−2.

5.1 Example 1: 2-D MBB beam

In this example we demonstrate the performance of the MGCG-based procedure in solving a
minimum compliance optimization of an MBB-beam. Even though 2-D applications are not of
primary concern due to the efficiency of direct sparse solvers [7], the purpose is to show that high-
resolution designs can indeed be obtained with multigrid-based procedures. Exploiting symmetry,
half of the beam is optimized on a 480×160 mesh; the volume fraction is 0.5; and the modified
SIMP penalty is gradually increased from 1.0 to 3.0. We use density filtering with a radius of
r = 1.5. Within the multigrid V-cycle, we apply a single damped Jacobi smoothening cycle with
ω = 0.8. Five multigrid levels are utilized, meaning a direct solve is performed on a 30×10 grid.
According to (4), the minimum number of MGCG iterations is set to 6. Optimization is performed
using optimality criteria and is terminated after 500 design cycles - the stopping criterion that
requires a maximum change of 10−3 in all design variables is not achieved.

A reference result that corresponds to a fully accurate analysis is obtained by setting η = 10−6 in
(6). Consequently, the relative norm of residual forces is in the order of 10−8 or smaller throughout
the optimization process. The objective value achieved is 193.4, and the average number of MGCG
iterations per cycle is 60.05. With η = 1, meaning criterion I (6) is essentially disregarded and
only criterion II (8) is applied to control the error, we achieve the exact same objective value of
193.4, but with only 12.79 MGCG iterations per cycle. Moreover, the optimized layout obtained
with the approximate procedure is identical to that from the fully accurate procedure, see Figure
8. In the MATLAB implementation, the savings in MGCG iterations are not directly translated
into savings in computing time due to the effort invested in matrix assembly. Nevertheless, CPU
time measured in MATLAB is reduced by 62% - from 2278 seconds to 868 seconds. The same
example was solved with the 88-line code [7] that uses a direct sparse solver in 899 seconds and
the objective was practically the same: 193.7 (though a very thin bar is not eliminated). With
a standard zero fill-in incomplete Cholesky preconditioner, an average number of 1,092.4 PCG
iterations per design cycle were required to obtain 10−8 accuracy in terms of residual forces and
computing time exceeded 4 hours. The achieved objective was slightly better - 192.0, but the
optimized layout consists of many thin ‘gray’ bars and does not constitute a rational design. This
further demonstrates the attractiveness of the MGCG-based approach to topology optimization,
even for medium-sized two-dimensional problems.

5.2 Example 2: 3-D cantilever

In this example we investigate the performance of the MGCG-based procedure in the optimization
of a three-dimensional cantilever beam with a sine-shaped load at the bottom of the free edge,
see Figure 9 for the problem setup. For comparing accurate versus approximate approaches, we
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Figure 8: Optimized layout of a 960×160 simply-supported beam with a point load, generated
using an MGCG iterative solver. Objective value and CPU time are competitive in comparison
with the results of the 88-line code.

first solve the problem on a 48×24×24 mesh; the volume fraction is 0.12; and the modified SIMP
penalty is 3.0. We use sensitivity filtering with a radius of r =

√
3. Within the multigrid V-

cycle, we apply a single damped Jacobi smoothening cycle with ω = 0.6. Four multigrid levels are
utilized, meaning a direct solve is performed on a 6×3×3 grid. According to (5), the minimum
number of MGCG iterations is set to 3. Optimization is performed using optimality criteria and is
terminated after 50 design cycles - the stopping criterion that requires a maximum change of 10−2

in all design variables is not achieved.

Figure 9: Problem setup for the minimum compliance of a 3-D cantilever beam.

With accurate analyses, the optimized compliance after 50 iterations is 3,330, the average
number of MGCG iterations per cycle is 60.32 and the measured CPU time is 364 seconds. The
exact same objective is obtained by an approximate procedure with η = 1, again meaning only
criterion II (8) is controlling the error. Computational effort is reduced significantly, by performing
only 15.04 MGCG iterations per cycle within a total CPU time of 183 seconds.

The main purpose of the article is to present a computational approach that facilitates the
solution of 3-D structural topology optimization problems on a standard PC in reasonable time.
This is clearly achieved: The cantilever beam problem modeled using a 80×40×40 mesh, with over
400,000 degrees of freedom, is solved by our MATLAB program in less than 15 minutes. The total
number of MGCG iterations was 921, i.e. 18.42 per design cycle in average. We believe that the
suggested procedure indeed paves the way for efficient implementations in computational environ-
ments that do not enjoy the benefits of high performance computing and parallel architectures,
such as applications on mobile devices and plug-ins for architectural modeling software.

The MGCG-based procedure appears to be very effective also in comparison to other Krylov
subspace solvers applied previously in the context of topology optimization. For example, Wang
et al. [42] suggest a MINRES procedure with subspace recycling, scaling and a relaxed convergence
tolerance. The number of iterations per design cycle is indeed relatively low - approximately 100
in average throughout the optimization process of a 3-D beam with 110,925 DOF. However, each
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Figure 10: Optimized layout of a 3-D cantilever beam using a 80×40×40 mesh. 50 design iterations
required less than 15 minutes on a single processor running MATLAB. The density value of the
isosurface displayed is 0.8. The bottom figures show longitudinal slices at the 18th and 20th
elements in the y-direction.
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linear solve took 50.5 seconds in average on a single processor with similar properties to the one
used in the current study. For comparison, the current MGCG-based procedure requires 3.66
seconds per design cycle of a 3-D beam with 91,875 DOF. Even if we assume that advances in
computer hardware are responsible for part of the gap, still the current results imply significant
improvements. Another reference result is the utilization of FETI-DP [20] in parallel topology
optimization as reported by Evgrafov et al. [19]. When optimizing a 3-D beam with roughly
1,000,000 DOF, 300 CG iterations were required in each design cycle, taking approximately 85
seconds on 96 processors. Again, it appears that MGCG can be much more efficient: In the
example above with 400,000 DOF, only 18.42 MGCG iterations were performed every design cycle
and the time required was 17.86 seconds on a single processor. Assuming linear increase in time
with respect to problem size, as expected in multigrid procedures, implies significant reduction in
computing time also in comparison to the FETI-DP approach.

5.3 Example 3: 3-D force inverter

For demonstrating the capability to tackle also non-self-adjoint problems, we solve a 3-D force
inverter problem, see Figure 11 for the problem setup. Exploiting double symmetry, only one
quarter of the structure is optimized on a 64×32×32 mesh. The spring stiffnesses are set to 0.1
for the input spring and 0.0001 for the output spring. The allowed volume fraction is 0.1 and the
penalization factor used in the modified SIMP interpolation is 3.0. Within the multigrid V-cycle,
we apply a single damped Jacobi smoothening cycle with ω = 0.6. A density filter is utilized
with the radius of r = 3 and the number of multigrid levels is four. Consequently the minimum
number of MGCG iterations is set to 2, but in practice the number of MGCG iterations performed
is greater or equal to 6 throughout all 100 design cycles. Again we set η = 1 in (6), leaving the
error to be controlled by satisfying (8). Updates of the design are performed by MMA [38].

Figure 11: Problem setup for the maximum output displacement of a 3-D force inverter.

The optimized force inverter provides an output displacement of 23.76, see Figure 12 for the
layout. This result is achieved after 100 design cycles, taking nearly 24 minutes on a standard PC
(i.e. 14.3 seconds per design cycle). The average number of MGCG iterations per design cycle is
12.17, ranging between 6 to 33 iterations according to the accuracy requirements dictated by the
convergence criterion. The MGCG-based procedure successfully overcomes a well-known strong
local minimum at the objective value of zero and produces a result that physically resembles
previous solutions of the 3-D force inverter problem [19, 5]. At the same time, computational
efficiency is significantly improved compared to previous reports. Evgrafov et al. [19] solved the 3-
D inverter problem on a much finer 150×75×75 grid - meaning roughly 12 times the number of DOF
used in the current study. They performed 360 CG iterations taking 830 seconds per design cycle on
8 processors. Amir et al. [5] used a coarser 60×30×30 grid, IC(0) for preconditioning and a relaxed
convergence criterion. They reported performing 58.71 PCG iterations in average throughout 200
design cycles, but no timing data is provided. Even with the differences in mesh resolutions
taken into account, the MGCG-based procedure clearly offers the most promising computational
efficiency.
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Figure 12: Optimized layout of a 3-D force inverter using a 64×32×32 mesh for one twice-symmetric
quarter. 100 design iterations required less than 24 minutes on a single processor running MAT-
LAB. The density value of the isosurface displayed is 0.3.

6 Discussion

An efficient computational approach to topology optimization was presented, based on utilizing
a multigrid preconditioned conjugate gradient (MGCG) solver in the nested analysis problem.
This facilitates the solution of three-dimensional design problems in reasonable time on a standard
PC. The positive results reported here encourage the further development of the MGCG-based
procedure also for high performance parallel computing environments where good scalability is
expected based on recent experience with parallelization of MGCG.

The article exhibits three main findings regarding the integration of MGCG in topology op-
timization procedures: 1) In its basic form, MGCG converges also for high-contrast parameter
distributions, thus it is suitable as a linear solver for the sequence of analysis problems arising
in topology optimization; 2) The number of MGCG iterations required for obtaining an accurate
optimization outcome is related to the geometric characteristics of the problem - the number of
grid levels and the filter size - thus a minimum number of MGCG can be defined based on these
parameters; and 3) The total number of MGCG iterations can be reduced by relating the required
accuracy of the design sensitivities to the progress of optimization - thus implying an adaptive
scheme where computational effort is invested only when it is necessary for achieving an accurate
outcome of optimization.

Implemented in MATLAB, the MGCG-based approach solves 3-D topology optimization prob-
lems in reasonable time on a standard PC. For example, a cantilever with 400,000 degrees of
freedom was optimized in less than 15 minutes. Furthermore, the approach appears to be compet-
itive also for medium-sized 2-D problems where run time was slightly shorter than of the 88-line
code. This clearly demonstrates the suitability of MGCG-based procedures for applications run-
ning in basic computational environments, e.g. the TopOpt app on hand-held devices and the
Grasshopper-Rhino plug-in on standard PC’s. Positive experience with parallel implementation
of MGCG implies that the presented approach is very promising also in the context of large-scale
topology optimization on high performance computers.
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