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Abstract

This article presents a new procedure for the layout design of reinforcement in concrete structures.
Concrete is represented by a gradient-enhanced continuum damage model with strain-softening and re-
inforcement is modeled as elastic bars that are embedded into the concrete domain. Adjoint sensitivity
analysis is derived in complete consistency with respect to path-dependency and the nonlocal model.
Classical truss topology optimization based on the ground structure approach is applied to determine the
optimal topology and cross-sections of the reinforcement bars. This approach facilitates a fully digi-
tal work flow that can be highly effective, especially for the design of complex structures. Several test
cases involving two- and three-dimensional concrete structures illustrate the capabilities of the proposed
procedure.
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1 Introduction

Structural optimization techniques are now considered an integral part of the design process in various in-
dustries, e.g. the automotive and aerospace industries. In particular, topology optimization is emerging as a
generic digital design tool that can be utilized in a wide range of engineering fields, spanning from nano-scale
photonics up to furniture and buildings [Sigmund and Bendsøe, 2004, Dombernowsky and Søndergaard,
2009, Stromberg et al., 2011]. Up to date, optimal design had little impact on traditional structural engi-
neering as practiced in the construction industry. Considering structural design with reinforced concrete,
optimal design is exceptionally challenging due to the difficulty in combining numerical optimization tools
with accurate constitutive models. Furthermore, applying continuum topology optimization procedures is
difficult because of the two distinct physical scales involved: reinforcement is achieved by inserting a very
small volumetric ratio of discrete steel bars into the continuum concrete.

The focus of the current study is on the design of the so-called ‘D-regions’ in structural concrete where
the strain distribution is nonlinear. In practice, strut-and-tie models are widely applied for positioning and
quantifying the reinforcement in such regions of the structure [Marti, 1985, Schlaich et al., 1987]. This is
opposed to ‘B-regions’ where beam theory and cross-sectional analysis are sufficient for determining the nec-
essary reinforcement. The strut-and-tie approach offers a simple model for identifying the flow of forces in a
cracked concrete continuum and is incorporated into major international building codes. The method’s main
drawbacks are time-consuming implementation; lack of specialized computer software for practical design;
as well as the difficulty in considering serviceability requirements such as deflections and crack widths [fib
Task Group 4.4, 2008]. In the context of utilizing optimization in reinforced concrete design, linear-elastic
continuum topology optimization was proposed as a means of automatically generating strut-and-tie models
[Liang et al., 2000]. More recently, Victoria et al. [2011] extended this idea by considering different material
properties in tension and compression; and Moen and Guest [2010] suggested truss topology optimization
as a basis for generating the strut-and-tie model. However, these contributions do not address the complete
design problem: further interpretation is required in order to proceed with solving the model and computing
the amount of reinforcement. With respect to B-regions in reinforced concrete such as beams, columns and
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frames, structural optimization based on cross-sectional forces resulting from frame analysis was addressed
by numerous investigators since the 1970’s but is beyond the scope of this article.

Significant advancements in nonlinear finite element analysis of reinforced concrete structures facilitate
the future development of computer-based automated design tools [fib Task Group 4.4, 2008]. It is the pur-
pose of this article to discuss a methodology that suggests a step forward towards digital design of reinforced
concrete. The procedure utilizes truss topology optimization for determining the layout of reinforcement
in D-regions of concrete structures. The key point is the combination of a continuum damage model for
concrete together with the embedded reinforcement formulation that enables the representation of discrete
reinforcement bars (rebars). As will be clarified throughout the article, a fully digital work flow can be es-
tablished, relying only on a finite element package capable of: nonlinear analysis; topology optimization;
and basic drawing. Such a procedure is especially attractive in the design of complex 2-D and 3-D structures
where strut-and-tie models are not easily realized.

In various aspects, the present study is inspired by and related to recent developments by Kato et al.
[2009] and Kato and Ramm [2010] regarding optimization of fiber reinforced concrete. It differs mainly
in the aim to generate general optimized layouts as opposed to sizing and shape optimization of predefined
reinforcement layers. We use the same continuum damage model for concrete [Peerlings et al., 1996] and
the same approach to embedded reinforcement modeling, proposed initially by Phillips and Zienkiewicz
[1976]. Kato et al. [2009] considered also a bond-slip interface model which is not included in the present
approach. On the other hand, the sensitivity analysis procedure is completely consistent and accounts also for
the influence of the non-local strains in the damage model, which were previously neglected for simplicity.

The article is organized as follows: first the finite element analysis is described in Section 2, with em-
phasis on the continuum damage model and on the embedded formulation in the context of truss topology
optimization. Adjoint sensitivity analysis is discussed in detail in Section 3. In Section 4 we present the
optimization problem formulation followed by a detailed case study of a simple 2-D deep beam. Several
demonstrative examples of optimized rebar layouts in two and three dimensions are presented in Section 5.
Finally, current results and future work are discussed in Section 6

2 Finite element modeling

2.1 Continuum damage model for concrete

In the current study, plain concrete is modeled as a strain-softening damaged continuum following Peerlings
et al. [1996]. In the context of concrete modeling for structural optimization, this model was recently utilized
successfully in several studies [Kato et al., 2009, Kato and Ramm, 2010]. The principal ingredients and
assumptions of the constitutive model are outlined in this section for the purpose of completeness. Large
deformations are not considered in the current study, meaning we assume small displacements and small
strains.

Damage is assumed to be isotropic and therefore the process is defined by a single scalar variable D,
where 0≤ D≤ 1. The stress-strain relation is given by

σ = (1−D)C : ε

where σ is the stress tensor, C is the elastic constitutive tensor and ε is the strain tensor. The product C : ε

is usually named the effective stress which acts on the actual resisting undamaged area (see for example
[Lemaı̂tre and Desmorat, 2005] for an introduction to damage mechanics). The evolution of damage is
governed by the history parameter κ . In the current study we utilize an exponential damage law [Mazars and
Pijaudier-Cabot, 1989]

D = 1− κ0

κ

(
1−α +α exp−β (κ−κ0)

)
where κ0 is a threshold value corresponding to the initiation of damage and α and β are material constants.
The damage law and the resulting uniaxial stress-strain curve are plotted in Fig. 1 for the parameter values
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Figure 1: Exponential damage law and resulting strain-softening curve

κ0 = 1×10−4, α = 0.95, β = 100 and Young’s modulus of 3×104. The history parameter corresponds to the
extremal deformation of the material, measured in the multiaxial case by an equivalent strain. In the current
study the equivalent strain measure resembles the Drucker-Prager yield function [Drucker and Prager, 1952]

εeq =
√

3J2 +mI1

where J2 is the second invariant of the deviatoric strain; I1 is the trace of the strain tensor; and m is a material
property that can be related to the ratio of strengths in uniaxial tension and compression. This equivalent
strain measure is essentially used in order to detect the initiation of damage: once the equivalent strain at a
certain material point exceeds the threshold value κ0, damage begins to evolve at that point. The function
εeq− κ0 = 0 is plotted in Figure 2 where κ0 is set so that in uniaxial tension, damage will initiate when
the cracking strain of concrete is exceeded. This means that for the particular case of uniaxial tension, the
criterion εeq−κ0 = 0 is the same as the Rankine criterion.
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Figure 2: The function εeq−κ0 = 0 in 2-D principal strain space

An important feature of the employed damage model is the non-local formulation achieved by consider-
ing also spatial gradients of the equivalent strain. Thus ill-posedness and mesh dependency that are typical in
analysis of strain-softening materials (e.g. Bažant et al. [1984]) are avoided. The non-local equivalent strain
denoted ε̄eq is related to the local measure εeq by the partial differential equation

ε̄eq− c∇
2
ε̄eq = εeq (1)
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where c is of the dimension length squared in 2-D and length cubed in 3-D. The complete derivation of
Eq. (1) from the assumption that ε̄eq represents a weighted average over a certain region is omitted for
the purpose of brevity. We note that Eq. 1 is solved using a finite element discretization with the natural
boundary conditions and can be conveniently coupled to the governing state equation of static equilibrium.

Applying the non-local approach, κ is determined at each material point according to the non-local
equivalent strain ε̄eq through the Karush-Kuhn-Tucker conditions

κ̇ ≥ 0, ε̄eq−κ ≤ 0, κ̇(ε̄eq−κ) = 0

meaning that a) κ never decreases; b) κ ‘registers’ the extremal non-local equivalent strain; and c) when κ

grows, then necessarily κ = ε̄eq.
The evolution of damage is represented as a process evolving in ‘time’, where the continuum problem (in

the temporal sense) is transformed into a discrete one by applying an incrementation scheme. For every time
increment, the weak form of the partial differential equilibrium equation is discretized using finite elements,
leading to the force balance equation

fu
ext − fu

int = 0

where fu
ext is the nodal external force vector accounting for volumetric, boundary and point loads. Similarly,

the spatial discretization of Eq. (1) leads to

fε −Kεε
ε̄eq = 0

Then the typical iterative system of equations to be solved by the Newton-Raphson method, with iterative
displacements and non-local equivalent strains as unknowns at cycle i, is expressed as[

Kuu
i−1 Kuε

i−1
Kεu

i−1 Kεε

][
δui

δ ε̄eq,i

]
=

[
fu
ext

fε
i−1

]
−
[

fu
int,i−1

Kεε ε̄eq,i−1

]
(2)

where the incremental index is omitted for a clearer presentation. With the shape functions collected in N
and Ñ for the displacements and the non-local equivalent strains respectively (the shape functions are not
necessarily of the same order); and with their derivatives collected in B and B̃ respectively, the components
of Eq. (2) are

Kuu
i−1 =

∫
Ω

BT (1−Di−1)CBdΩ

Kuε
i−1 = −

∫
Ω

BT Cε i−1qi−1ÑdΩ

Kεu
i−1 = −

∫
Ω

ÑT
(

∂εeq

∂ε

)T

i−1
BdΩ

Kεε =
∫

Ω

(
ÑT Ñ+ B̃T cB̃

)
dΩ

fu
int,i−1 =

∫
Ω

BT
σ i−1dΩ

fε
i−1 =

∫
Ω

ÑT
εeq,i−1dΩ

Path-dependency enters the formulation through the scalar q which is non-zero only if κ (and therefore
damage) is evolving with respect to the value at the previous converged increment denoted κold

qi−1 =

{ (
∂D
∂κ

)
i−1

if ε̄eq,i−1 > κold

0 if ε̄eq,i−1 ≤ κold

In practice, a displacement-controlled incrementation is more suitable due to the strain-softening re-
sponse. This means that a prescribed iterative displacement, denoted δup, is enforced at a particular degree
of freedom (DOF). Then we have an unknown iterative load factor δθ instead of δup and the corresponding
iterative equation system is slightly modified accordingly. In order to avoid modifying the tangent stiffness
matrix (and for keeping its structure) we implement displacement control as suggested by Batoz and Dhatt
[1979].
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2.2 Embedded reinforcement formulation

A key component in the approach discussed in this article is the use of the embedded formulation for repre-
sentation of rebars. The embedded formulation was initially suggested by Phillips and Zienkiewicz [1976]
and later extended by Chang et al. [1987]. The main idea is that the stiffness of each individual rebar, mod-
eled by a 1-D element, is added to the stiffness of the surrounding concrete domain, modeled by continuum
elements. An example is sketched in Fig. 3. A single rebar is embedded into a hosting isoparametric 2-D
element. It is assumed that the deformation of the bar is compatible to that of the hosting element. Therefore
the strain in the bar is related to the element nodal displacements through the shape functions and its stiffness
can be added at the element nodes.

Figure 3: Example of a 1-D rebar embedded into an isoparametric 2-D element

In continuum-based topology optimization, the design domain is typically discretized using a structured
grid mesh with equilateral elements. In truss topology optimization, a so-called ‘ground structure’ is con-
structed such that it consists of all possible connectivities of bars within the design domain. These practices
make the embedded formulation very attractive because the complete truss ground structure can be embed-
ded into the continuum grid in a relatively simple manner. Moreover, practical design requirements can be
automatically considered due to the flexibility in the generation of the truss ground structure. Examples are
physical spacing between bars; clear concrete cover with no reinforcement near the edges of the domain;
and orthogonal reinforcement patterns (without diagonal bars) which are easier to construct. Demonstrative
examples for truss structures embedded into a structured grid in 2-D are presented in Fig. 4.

The superposition of bar stiffnesses onto the hosting element stiffnesses is rather simple due to the way
the ground structure is created. In essence, no element-level embedding is necessary because the truss
elements share the same nodes as the hosting elements. This of course does not imply any loss of generality of
the approach: the user may define bars in any location and embed them into the respective hosting elements.
However, using a regularly-spaced truss structure with nodes that are compatible to those of the hosting mesh
simplifies the embedding process by turning it into a global-level operation.

Finally, the contribution of the embedded truss structure to the global stiffness and internal force is added
and Eq. (2) is modified accordingly[

Kuu
i−1 +Kbars Kuε

i−1
Kεu

i−1 Kεε

][
δui

δ ε̄eq,i

]
=

[
fu
ext

fε
i−1

]
−
[

fu
int,i−1 + fbars

int
Kεε ε̄eq,i−1

]
(3)

where Kbars and fbars
int are the global stiffness matrix and internal forces corresponding to the complete set of

truss bars. In the current study, the bars are considered as linear elastic.
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(a) The basic building block: truss bars em-
bedded into a hosting square element

(b) A basic building block but with bigger
physical spacing between bars

(c) Closely-spaced truss ground structure with
clear cover near the edges

(d) Same as (c) but without diagonal bars

Figure 4: Demonstrative examples for truss structures embedded into a structured grid
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3 Sensitivity analysis

In this section we provide some details regarding the sensitivity analysis procedure that should be care-
fully derived due to the nonlinearity and path-dependency of the structural analysis. In order to improve
transparency in the presentation of the sensitivity analysis procedure, we artificially represent the structural
analysis as a series of coupled equation systems corresponding to each of the ‘time’ increments. The first
equation system is the global nonlinear incremental equilibrium that can be expressed as

Rn(un,θn, ε̄eq,n,κn−1,x) =
[

θnf̂u
ext − fu

int
fε −Kεε ε̄eq

]
n
= 0

where the unknowns at a certain increment n (n = 1, ...,Nin, Nin the number of increments) are the dis-
placements un, the load factor θn and the non-local equivalent strains ε̄eq,n; f̂u

ext is the constant reference
load vector; κn−1 are the history parameters at the previous converged step, on a gauss point level; and
x is the vector of design variables. The second system is a collection of local equations which trace the
path-dependencies throughout the evolution of damage

Hn(ε̄eq,n,κn,κn−1) = 0

At each point, two possible states exist

Hn =

{
κn− ε̄eq,n if ε̄eq,n > κn−1
κn−κn−1 if ε̄eq,n ≤ κn−1

where we note that ε̄eq,n, κn and κn−1 are Gauss point quantities. The relation to the nodal quantities used
above is given by ε̄eq,n = Ñε̄

e
eq,n where ε̄

e
eq,n are the nodal non-local equivalent strains in element e.

The representation of the structural analysis as a transient coupled problem enables utilization of the
framework by [Michaleris et al., 1994] which in our opinion leads to a rather transparent and convenient
adjoint sensitivity analysis procedure. For simplifying the presentation, we consider an objective functional
related only to the final temporal state φ(x) = G(uNin(x),θNin(x), ε̄eq,Nin(x),κNin−1(x),x) We begin by writ-
ing the augmented functional

φ̂(x) = G(uNin(x),θNin(x), ε̄eq,Nin(x),κNin−1(x),x)

−
Nin

∑
n=1

λ
T
n Rn(un(x),θn(x), ε̄eq,n(x),κn−1(x),x)

−
Nin−1

∑
n=1

Ngp

∑
gp=1

γnHn(ε̄eq,n(x),κn(x),κn−1(x))

where λ n and γn are incremental adjoint vectors in the global and local level respectively; and Ngp is the
number of Gauss points in the finite element. The design sensitivites with respect to a certain variable xi are
then obtained from the explicit derivatives of the augmented functional

∂φ

∂xi
=

∂ φ̂exp

∂xi
=

∂G
∂xi
−

Nin

∑
n=1

λ
T
n

∂Rn

∂xi
(4)

The derivatives ∂G
∂xi

and ∂Rn
∂xi

are related directly to the optimization problem and to the nonlinear model. The
missing terms are the adjoint variables λ n which are determined by requiring that all implicit derivatives of
the augmented functional are eliminated.

In order to eliminate all implicit design sensitivities, a backwards-incremental adjoint procedure is per-

formed. In the final increment denoted Nin, we aim to eliminate the implicit derivatives ∂u f
Nin

∂x , ∂θNin
∂x and

∂ ε̄eq,Nin
∂x where the superscript f denotes non-prescribed (free) degrees of freedom. The resulting adjoint

7



equations are {
∂G

∂u f
Nin

}
−λ

T
Nin

[
∂RNin

∂u f
Nin

]
= 0

∂G
∂θNin

−λ
T
Nin

{
∂RNin

∂θNin

}
= 0 (5){

∂G
∂ ε̄eq,Nin

}
−λ

T
Nin

[
∂RNin

∂ ε̄eq,Nin

]
= 0

Note that the expressions − ∂RNin

∂u f
Nin

and − ∂RNin
∂ ε̄eq,Nin

are the components of the non-prescribed DOF in the tangent

stiffness matrix KNin corresponding to the converged state at increment Nin. Therefore the adjoint system
(5) can be solved using a similar stiffness matrix K̃Nin that is the same as KNin except for a modification of
the column denoted by the superscript p corresponding to the prescribed DOF

K̃ f
Nin = K f

Nin

K̃p
Nin =

∂RNin

∂θNin

Finally the linear system to be solved is

K̃T
Ninλ Nin =


−
{

∂G
∂u f

Nin

}T

∂G
∂θNin

−
{

∂G
∂ ε̄eq,Nin

}T

 (6)

Stepping backwards to increment Nin− 1, we aim to eliminate the implicit derivatives ∂κNin−1
∂x . This is

achieved by setting the local adjoint variables

γNin−1 =
∂G

∂κNin−1
−
{

∂RNin

∂κNin−1

}T

λ Nin

where the equality ∂HNin−1
∂κNin−1

= 1 was utilized. The derivative ∂RNin
∂κNin−1

is non-zero only in points where path-
dependency occurs at increment Nin, meaning damage was determined by κNin−1 rather than by ε̄eq,Nin. From
here a general form for the global adjoint equation that holds for increments n = 1, ...,Nin− 1 is revealed.
It is the same as Eq. (5) but has no derivatives of G and has an additional right-hand-side term involving γn

which introduces the path-dependency

−λ
T
n

[
∂Rn

∂u f
n

]
= 0

−λ
T
n

{
∂Rn

∂θn

}
= 0

−
{

γn
∂Hn

∂ ε̄eq,n
Ñ
}
−λ

T
n

[
∂Rn

∂ ε̄eq,n

]
= 0

This means that the added term to the right-hand-side is an assembly onto the global level of local terms
corresponding to points where ∂Hn

∂ ε̄eq,n
is non-zero. Then the linear system to be solved in the general increment

is

K̃T
n λ n =


0
0{

ÑT ∂Hn
∂ ε̄eq,n

γn

}
 (7)
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Finally, the general form for the expression used to compute the local adjoints, that holds for increments
n = 1, ...,Nin−2 is revealed as

γn =−
{

∂Rn+1

∂κn

}T

λ n+1−
∂Hn+1

∂κn
γn+1 (8)

In summary, the backwards-incremental adjoint procedure consists of the following steps:

1. Solve for λ Nin using Eq. (6).

2. Collect design sensitivities according to Eq. (4).

3. Set for all Gauss points γNin = 0.

4. Repeat for n = Nin−1, ...,1:

(a) For all Gauss points compute γn using Eq. (8) and assemble extra term of right-hand-side for Eq.
(7).

(b) Solve for λ n using Eq. (7).

(c) Collect design sensitivities according to Eq. (4).

Concluding this section, we note that the computed design sensitivities were found to be in perfect
agreement with numerical derivatives based on finite differences.

4 Topology optimization

The aim is to distribute a given volume of steel reinforcement bars within a certain concrete domain so that
the stiffest structure is obtained. In the case of a nonlinear structural response and a displacement-controlled
analysis, this can be posed as maximization of the end-compliance. In other words, we seek to maximize the
load-bearing capacity in the final equilibrium state corresponding to the desired value of the total prescribed
displacement.

4.1 Design parametrization

The approach for obtaining an optimized layout of reinforcement bars follows common truss optimization
procedures based on the ground structure approach (see for example Bendsøe and Sigmund [2003] for an
overview of this method). The cross-section area of each bar element in the truss ground structure is associ-
ated to a design variable. In general, we consider zero bar areas to be feasible so the optimization problem
combines topology and sizing.

The relation between a certain bar area in element i and the corresponding mathematical design variable
is given by a linear interpolation

ai = amin +(amax−amin)xi

where ai is the physical cross-section area; amin and amax are lower and upper bounds of the desired range of
areas; and xi is the design variable, 0 ≤ xi ≤ 1. The choice of amin and amax gives the user control over the
outcome of optimization and should be related to the actual purpose of employing structural optimization.
For example, if we seek only qualitative insight regarding the optimal distribution of reinforcement, we
may define amin = 0 and set amax so that it corresponds to the available volume and to the geometry of the
domain. On the other hand, if we wish to generate a practical reinforcement layout, then amin may correspond
to minimal reinforcement requirements provided the ground structure represents a manufacturable rebar
pattern. Furthermore, amax can be related to the maximum bar area we would like to use in construction.
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Another parameter that should be chosen in accordance with the desired outcome is the degree of penal-
ization. We employ a modified SIMP [Bendsøe, 1989, Sigmund and Torquato, 1997] interpolation scheme
so that the stiffness matrix of bar i is given by

Ki = Esteel(amin +(amax−amin)x
pbar
i )K0

i (9)

where pbar ≥ 1 is the penalization factor and K0
i is a parametric stiffness matrix of the bar for E = 1, a = 1.

In principle, the most freedom is given to the optimization procedure when no penalization is considered
(pbar = 1). The result in terms of continuously varying bar areas can then be post-processed to fit available
bar types in practice. Nevertheless, one may consider adding penalization (pbar > 1) for various purposes.
Examples are to approach a 0-1 design with a single bar type; or to obtain a ‘clean’ layout with realistic
physical spacing between bars when the ground structure is relatively dense.

4.2 Problem formulation

With the parametrization described above, the optimization problem to be solved is expressed as

min
x

φ = −θNin f̂ pup
Nin

s.t.:
Nbars

∑
i=1

aili ≤ ρV

0≤ xi ≤ 1, i = 1, ...,Nbars (10)

with: Rn(un,θn, ε̄eq,n,κn−1,x) = 0 n = 1, ...,Nin

Hn(ε̄eq,n,κn,κn−1) = 0 n = 1, ...,Nin−1

where Nbars is the number of bars in the ground structure; li is the length of bar i; ρ is the reinforcement
volume ratio; and V is the volume of the concrete domain.

The compliance measure takes into account only the prescribed DOF even though a general distributed
load is considered. Maximizing the complete end-compliance θNinf̂T uNin does not necessarily lead to the
stiffest structural layout: because the displacement is prescribed at a single DOF while the same load factor
θ multiplies all nodal loads, maximizing θNinf̂T uNin may result in a structure that is very stiff with respect
to bearing the load at the prescribed DOF but very flexible with respect to all other loads. In the current
study, we only consider concentrated loads that are distributed locally in the vicinity of the prescribed DOF
so that a better finite element approximation is obtained. Optimizing for general distributed loads with
a displacement-controlled nonlinear analysis requires the definition of a suitable objective functional for
obtaining ‘the stiffest structure’. A certain intuitive remedy for this in the form of a hybrid procedure, using
a load-controlled objective and a displacement-controlled analysis, was proposed and applied by Bogomonly
and Amir [2012]. However, it appears to be applicable only in cases where the force-displacement relation
is unique.

4.3 Particular sensitivity analysis

With respect to the general sensitivity analysis procedure described in Section 3, the only non-zero derivative
of the paricular objective in (10) is ∂G

∂θNin
=− f̂ pup

Nin that enters Eqs. (5) and (6). The adjoint equation system
corresponding to the final increment is therefore

K̃T
Ninλ Nin =


0

− f̂ pup
Nin

0


Furthermore, the derivative ∂Rn

∂xi
in Eq. (4) involves only bar forces and is easily evaluated for each design

variable as follows
∂Rn

∂xi
=−pbarx

(pbar−1)
i (amax−amin)EsteelK0

i un,i

where un,i are the displacements computed at increment n in the i−th element’s degrees of freedom.
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4.4 Case study: 2-D deep beam

In this section, we demonstrate the application of the proposed approach to reinforcement design of a 2-D
deep beam. The problem setting and the computational model for analysis and optimization are described
in Figure 5. This is a rather simple case from the design point of view so attention can be focused on
investigating the influence of the various parameters on the outcome of optimization.

0.
64

5m
, n

el
y 

=
 6

0

1.0m, nelx = 93

Up = 0.5 mm

5 loaded
nodes

5 supported
nodes

clear cover
3 elements

Figure 5: Problem setting and computational model, symmetric half of a 2-D deep beam

Ground structures Three different ground structures are utilized in this case study, as presented in Figure
6. The first, denoted GS1, consists of basic building blocks (see Figure 4) over the entire continuum mesh,
excluding the clear cover regions. The second, denoted GS2, consists of the same type of building blocks
but with larger (and more practical) spacing, corresponding to roughly 0.1m between bars in the x and
y directions. The third ground structure, denoted GS3, is the same as the second but with bars only in
Cartesian directions, which is typically preferable due to easier construction. There exist of course many
other possibilities of defining the acceptable positions of reinforcement bars. Nevertheless, we believe that
these three particular variants demonstrate the freedom and control given to the designer in the setup of the
optimization problem.

Comparison to linear-elastic optimization We first wish to benchmark the results obtained by the pro-
posed procedure against two other optimization procedures based on linear-elastic analysis. We compare the
performance of three optimized layouts generated as follows:

1. Linear-elastic truss optimization. In this approach, concrete is absent so the load is carried by the
truss structure which is optimized to achieve minimum compliance for a fixed load. This is essentially
the idea of generating a strut-and-tie model by topology optimization, but with a truss ground structure
as suggested by Moen and Guest [2010]. In the next step, it is assumed that only the tensile bars in
this optimized truss represent the reinforcement layout. The tensile bar areas are then scaled so that
the total volume of reinforcement is the same as for the other cases.
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(a) Ground structure 1 (GS1): densely-spaced truss structure

 

 

(b) Ground structure 2 (GS2): sparsely-spaced truss structure with 9×9 element
modules

 

 

(c) Ground structure 3 (GS3): same as (b) but without diagonal bars

Figure 6: Three variants of truss ground structures for the deep beam example, symmetric half
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2. Linear-elastic embedded rebar optimization. This approach is the same as proposed in this article
but without the nonlinear material modeling. Both tension and compression in rebars are acceptable
as opposed to a strut-and-tie force transfer mechanism.

3. Damage-based embedded rebar optimization. This is the procedure suggested in this article where
the distribution of embedded rebars is optimized considering damage in the hosting concrete.

The three structures are evaluated considering damage with the suggested respective reinforcements.
For this comparison, GS2 was utilized along with the following parameters: reinforcement ratio ρ =

0.005; de-localization parameter c = (ly/10)2 (=0.0042m2); amin = 1× 10−10 (=1× 10−4mm2/m); amax =
ρ
√

V (=4016mm2/m); and pbar = 1. The damage-based optimization converged after 92 iterations, when the
change in all design variables did not exceed 1×10−6. The resulting objective values φ , equal to minus the
end-compliance, are−3.3561×10−5 for the linear-elastic truss optimization;−3.4453×10−5 for the linear-
elastic embedded rebar optimization; and −3.5486×10−5 for the damage-based optimization. With respect
to a reference value of −2.9612× 10−5 corresponding to an initial uniform distribution of reinforcement,
the damage-based truss optimization gives nearly 50% extra improvement in objective value over the linear-
elastic truss optimization and more than 20% extra improvement over the linear-elastic embedded procedure.
This justifies the utilization of a more elaborate model despite the higher computational demands. In future
applications we intend to consider also objectives involving control of damage or cracking, where the benefit
of nonlinear material modeling should be even more significant.

The difference between the linear-elastic and the damage-based approaches can be clarified by examining
the optimized layouts, see Figure 7. In the damage-based optimization, rebars are mainly distributed where
the structure is severely damaged, namely in the bottom fibers. Some reinforcement is also positioned in the
vicinity of the concentrated load so that damage is avoided there. In the linear-elastic embedded approach
the same regions are reinforced but without preference to the tensile state due to the absence of failure.
The linear-elastic truss optimization assumes that the tensile forces are transferred through truss bars only
and thus does not account for the contribution of the undamaged concrete. In other words, linear-elastic
optimization may be used to generate a valid strut-and-tie model but this will not necessarily give the optimal
distribution of reinforcement.

Iter: 100 Objval: −3.526e−007 Constval: −3.833e−007

(a) Tensile rebars only according to a linear-elastic truss op-
timization, φ =−3.3561×10−5

Iter:  53 Objval: −4.513e−005 Constval: 8.917e−011

(b) Distribution of rebars according to a linear-elastic em-
bedded rebar optimization, φ =−3.4453×10−5

Iter:  92 Objval: −3.549e−005 Constval: 1.965e−011

(c) Distribution of rebars according to a damage-based em-
bedded rebar optimization, φ =−3.5486×10−5

Figure 7: Deep beam case study: comparison of optimized layouts for different optimization approaches
with GS2.

For further comparisons aimed at examining the effect of the various parameters, the result obtained with
damage-based optimization and presented in Figure 7(c) is used as reference. By varying one parameter at
a time, we will try to provide insight regarding the sensitivity of the proposed procedure to the choice of
ground structure, penalty factor and de-localization parameter.
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Effect of ground structure resolution We now focus on how the choice of the ground structure influences
the outcome of optimization. We use the three variants GS1, GS2 and GS3 mentioned above; all other
parameters are kept the same as for the previous comparison. The optimized layouts obtained with GS1
and GS3 are shown in Figure 8 while the result with GS2 was already shown in Figure 7(c). The objective
values are −3.5714×10−5 and −3.5474×10−5 respectively. As expected, a larger variety of rebars in the
ground structure leads to a better result: φGS1 < φGS2 < φGS3. However, the layout generated with GS1
consists of a very dense distribution of diagonal rebars; this poses a problem for automatic post-processing
of a reinforcement plan. As will be discussed in the next section, penalization can be applied for ‘cleaning’
such layouts.

Iter: 100 Objval: −3.571e−005 Constval: −5.326e−007

(a) Optimized layout with GS1, φ =−3.5714×10−5

Iter:  54 Objval: −3.547e−005 Constval: 1.239e−012

(b) Optimized layout with GS3, φ =−3.5474×10−5

Figure 8: Deep beam case study: effect of different ground structures

Effect of penalty factor According to various numerical experiments conducted in this study, the optimiza-
tion procedure easily converges towards distinct layouts without applying any penalization of intermediate
densities. If continuous cross-section areas are acceptable as a result of optimization, then in principle no
penalization is necessary. Nevertheless, when using very dense ground structures the final layout consists of
closely-spaced rebars and one may want to obtain a cleaner design prior to the generation of an actual rein-
forcement plan. Mild penalization can be successfully utilized for this purpose, as demonstrated in Figure
9. We note that in the presented layouts, the horizontal bar in the bottom fiber typically consists of multiple
layers which seem merged due to the linear relation between the bar area and the plotted line width. This is
clarified by the ‘zoom-in’ in Figure 9(d).

Using the dense GS1, we gradually raise pbar from 1.00 to 1.05. It can be seen that the dense diagonal
bars are gradually eliminated. This comes with little compromise on the performance of the structure: the
objective value corresponding to the optimized design with GS1 and pbar = 1.00 was −3.5714× 10−5;
the objective value corresponding to the design obtained with gradual penalization was −3.5704× 10−5

(evaluated with the physical pbar = 1.00). This highlights a clear tendency to use as much material as
possible for bars positioned as close as possible to the bottom fiber, whereas diagonal bars resisting shear
cracking are less significant for the compliance objective.

Effect of de-localization parameter The de-localization parameter c in Eq. (1) determines the size of the
averaging domain in the nonlocal damage model and therefore introduces a length scale in the solution of
the state equations. In general, small values of c lead to a more localized response along with more extensive
damage. High values of c cause the damage to spread smoothly over a larger area (or volume) and thus the
extremal degree of damage is reduced. It is difficult to state an ideal value of c, but from the optimization
perspective c should correspond to the geometry of the concrete domain and to the spacing of the rebars. The
impact on the optimized layouts can be observed in Figure 10 where both the damage distribution and the
layout are presented side-by-side for the symmetric half. The layout can be compared to the reference design
in Figure 7(c). The length scale introduced by the parameter c clearly affects the rebar distribution: the
presence of a certain rebar contributes to the reduction of damage in its close neighborhood, which is defined
by c. Therefore smaller values of c require a finer distribution of rebars, whereas enlarging the averaging
domain leads to more ‘concentrated’ rebar distributions.
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Iter:  51 Objval: −3.567e−05 Constval: −2.031e−05

(a) After 50 design iterations, pbar = 1.000

Iter: 101 Objval: −3.564e−05 Constval: −3.946e−07

(b) After 50 further design iterations, pbar = 1.025Iter: 150 Objval: −3.565e−05 Constval: 9.565e−09

(c) After 50 further design iterations, pbar = 1.050

Iter: 150 Objval: −3.565e−05 Constval: 9.565e−09

(d) Focus on particular region in the final layout

Figure 9: Deep beam case study: effect of added penalization
Iter:  66 Objval: −3.694e−05 Constval: 4.959e−11

(a) Damage and optimized layout with c = (ly/5)2 (=0.0166m2), φ =−3.6941×10−5

Iter:  89 Objval: −3.468e−005 Constval: 1.247e−010

(b) Damage and optimized layout with c = (ly/20)2 (=0.0010m2), φ =−3.4682×10−5

Figure 10: Deep beam case study: effect of de-localization parameter
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Table 1: Material properties used in all examples
Ec [MPa] ν κ0 m α β Es [MPa]

30,000 0.2 1.818×10−4 0.818 0.95 100 200,000

Table 2: Dimensions of reinforcement bars
Diameter [mm] Area [mm2] amax [m2/m]

16 201 2.011×10−3

18 254 2.545×10−3

20 314 3.142×10−3

22 380 3.801×10−3

25 491 4.909×10−3

5 Examples

Several examples of reinforcement layouts are presented in this section. The focus is on load-bearing con-
crete structures, where self-weight is insignificant with comparison to the external load. The loads are in
principle point forces which are distributed locally in order to avoid artificial stress concentrations due to
the finite element discretization. A small prescribed displacement is imposed at the central loading point
and the analysis is performed using displacement control with adaptive incrementation. In the examples pre-
sented, the number of increments was usually between 6 to 10 and the number of Newton-Raphson iterations
per increment between 1 to 5. For two-dimensional problems, the continuum mesh for concrete consists of
square, 4-node plane stress elements. For three-dimensional problems, 8-node cube elements are utilized.
Material properties are kept constant for all examples and are given in Table 1. The only exception is the
de-localization parameter which is set according to the particular geometry. The procedure is implemented
in FORTRAN and the optimization is performed by the Method of Moving Asymptotes - MMA [Svanberg,
1987]. The optimization is terminated when the biggest absolute change in the values of the design variables
is smaller than 1× 10−6; if this criterion is not met, then typically a maximum of 100 design cycles are
performed. According to the authors’ experience, only small changes occur after 30 design cycles and after
100 cycles the maximum absolute change seldom exceeds 1×10−4.

An important parameter whose influence is examined in the following examples is the value of amax. In
order to achieve results close as possible to practical reinforcement plans, we choose various values of amax

according to typical bar types used in the construction industry. A list of five bar types and the corresponding
values for the design parametrization (9) is given in Table 2. In two-dimensional cases, it is assumed that the
bars are positioned every 0.1m in the thickness direction. Therefore the value of amax corresponds to the area
of 10 rebars per unit thickness.

5.1 2-D corbel

We consider the design of a 2-D corbel, which was previously examined by several researchers in the context
of applying continuum topology optimization for generating strut-and-tie models [Kwak and Noh, 2006,
Bruggi, 2009, Victoria et al., 2011]. The setting of the problem is given in Figure 11, including details
regarding the finite element discretization and the position of the truss ground structure. Two types of ground
structures are utilized which are equivalent to the types GS2 and GS3 described above, with a spacing of 6
continuum elements between adjacent bar elements. The parameter c for the nonlocal damage formulation
is set to 0.0025 m2 and the volume of steel is set to 0.005×V in all simulations.

First we examine the results obtained with amin = 0. The optimized layouts can be observed in Figure
12. The influence of the parameter amax is clear: for maximizing the end-compliance, it is beneficial to
place as much material as possible in a few critical bar positions. If a lower amax is imposed, then rebars are
more widely distributed in the domain but the performance is compromised. Furthermore, it can be seen that
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Figure 11: 2-D corbel: problem setting and computational model
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for the compliance objective in the prescribed range of deformation, it is sometimes better to allow limited
tension in the concrete while reinforcing compression regions. This can be seen especially in the result with
GS3 and amax = 2011mm2/m, where the upper part of the column acts mainly in tension and is not reinforced,
while some rebars are placed in the lower part of the column and act in compression. In principle, a strut-
and-tie model will predict a different distribution, because it assumes that the concrete phase is completely
cracked in tension.

As mentioned above, the parameter amin can be utilized to introduce a minimal reinforcement distributed
uniformly throughout the truss ground structure. In Figure 13 we present the layout obtained for the same
problem setting with GS3, but with amin = 1131mm2/m and amax = 4909mm2/m. The result is in principal
very similar to that obtained with amin = 0 and amax = 4909mm2/m, in the sense that the thick rebars are
positioned in the same locations. However, it is expected that adding minimal reinforcement will reduce
the concrete crack widths in the regions of tensile stresses. For practical applications, we note that the
designer is free to define any minimal reinforcement pattern and embed it within the concrete domain. The
corresponding rebars will not be related to the design variables in the optimization problem, which will
determine only the layout of the additional reinforcement.

5.2 2-D wall with opening

In this example we aim at designing the reinforcement for a wall with an opening, see Figure 14 for the
problem setting. Schlaich et al. [1987] gave it thorough consideration when demonstrating the strut-and-tie
modeling approach for design of structural concrete. It was also used as an example for applying continuum
topology optimization as a means of generating strut-and-tie models, initially by Liang et al. [2000] and later
by other investigators [Kwak and Noh, 2006, Bruggi, 2009, Victoria et al., 2011]. Two types of ground struc-
tures are utilized: both use a grid with the same spacing as the continuum grid, with or without diagonal bars.
The parameter c for the nonlocal damage formulation is set to c = (ly/15)2 (=0.0982 m2) in all simulations.
The volume of steel is set to 0.005×V ; amax = 4909mm2/m and amin is zero.

In order to eliminate dense distributions of thin bars, penalization is introduced gradually: we perform
three stages of 50 design iterations, with the values of pbar = 1.00, pbar = 1.25 and pbar = 1.50 respectively.
The resulting layouts presented in Figures 15 and 16 demonstrate the significance of the ground structure
layout. While the response of the concrete phase in both structures is similar as can be observed in the
principal stress plots, the contribution of reinforcement is fundamentally different. When diagonal rebars are
available, they are used primarily to reinforce the shear block on the right side of the structure where rebars
act both in tension as well as in compression. According to the reaction forces, this shear block carries
roughly 2/3 of the load in both cases; therefore the stiffening due to reinforcement is favorable for improving
the load-bearing capacity. Examining the objective values, using diagonal reinforcement leads to 30.3%
improvement compared to the initial design, while without diagonals only 15.4% is achieved. The structure
with diagonals has an overall lower level of damage, in particular within the shear block. At the same time,
the absence of massive reinforcement in the bottom fiber causes higher levels of damage there, compared to
the structure without diagonals.

5.3 3-D pile cap

As a final example we consider the rebar distribution in a pile cap which is essentially a three-dimensional
box-shaped block, see Figure 17 for the problem setting, the initial design and the resulting layout. The pile
cap transfers a vertical force from a column (or bridge pier) to four piles positioned in a rectangular layout.
Double symmetry is exploited so only one quarter of the pile cap is modeled and optimized. The ground
structure is a simple 3-D extension of GS1 with a clear cover of one finite element in all directions excluding
symmetry planes. The parameter c for the nonlocal damage formulation is set to c = (ly/5)3 (=0.001 m3).
The volume of steel is set to 0.005×V ; amax = 4909mm2/m and amin is zero.

In this example we again introduce gradual penalization in three stages of 50 design iterations with
pbar = 1.00, pbar = 1.25 and pbar = 1.50. In the optimized layout, rebars are mainly positioned in the bottom
fiber in the direction of the major bending action; as well as right above the piles where strong reaction forces
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(a) GS2 with uniform distribution
of reinforcement, φ = −6.171×
10−5

Iter: 100 Objval: −7.462e−005 Constval: −1.656e−008

(b) Optimized layout with GS2
and amax = 4909mm2/m, φ =
−7.462×10−5

Iter:  98 Objval: −7.292e−005 Constval: 1.003e−011

(c) Optimized layout with GS2
and amax = 2011mm2/m, φ =
−7.292×10−5

(d) GS3 with uniform distri-
bution of reinforcement, φ =
−6.062×10−5

Iter:  52 Objval: −6.504e−005 Constval: 1.296e−012

(e) Optimized layout with GS3
and amax = 4909mm2/m, φ =
−6.504×10−5

Iter: 100 Objval: −6.353e−005 Constval: 4.171e−009

(f) Optimized layout with GS3
and amax = 2011mm2/m, φ =
−6.353×10−5

Figure 12: Reinforcement layouts for the 2-D corbel
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Iter:  52 Objval: −6.481e−05 Constval: 6.651e−11

Figure 13: Reinforcement layout for the 2-D corbel: optimized layout with GS3, amin = 1131mm2/m and
amax = 4909mm2/m, φ =−6.481×10−5
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Figure 14: 2-D wall with opening: problem setting and computational model
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Iter: 150 Objval: −3.467e−03 Constval: −8.012e−08

(a) Ground structure with uniform distribution of reinforce-
ment, φ =−2.660×10−3

Iter:  50 Objval: −3.489e−03 Constval: −1.775e−05

(b) Layout after 50 design cycles with pbar = 1.00, φ =
−3.489×10−3

Iter: 100 Objval: −3.468e−03 Constval: −6.423e−05

(c) Layout after 50 further design cycles with pbar = 1.25,
φ =−3.468×10−3

Iter: 150 Objval: −3.467e−03 Constval: −8.012e−08

(d) Layout after 50 further design cycles with pbar = 1.50,
φ =−3.467×10−3

(e) Distribution of damage in the optimized design (f) Principal stress plot for the optimized design

Figure 15: Reinforcement layouts and response of the 2-D wall with opening, dense ground structure
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Iter: 150 Objval: −3.154e−03 Constval: −4.070e−08

(a) Ground structure with uniform distribution of reinforce-
ment, φ =−2.733×10−3

Iter:  50 Objval: −3.156e−03 Constval: −4.126e−07

(b) Layout after 50 design cycles with pbar = 1.00, φ =
−3.156×10−3

Iter: 100 Objval: −3.155e−03 Constval: −1.689e−05

(c) Layout after 50 further design cycles with pbar = 1.25,
φ =−3.155×10−3

Iter: 150 Objval: −3.154e−03 Constval: −4.070e−08

(d) Layout after 50 further design cycles with pbar = 1.50,
φ =−3.154×10−3

(e) Distribution of damage in the optimized design (f) Principal stress plot for the optimized design

Figure 16: Reinforcement layouts and response of the 2-D wall with opening, dense ground structure with
rebars in Cartesian directions only
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(a) Problem setting and computational model

Iter: 150 Objval: −3.545e−006 Constval: −5.903e−006

(b) Ground structure with uniform distribution of reinforce-
ment, φ =−2.890×10−6

Iter: 150 Objval: −3.545e−006 Constval: −5.903e−006

(c) Layout after 150 design cycles with gradual penaliza-
tion, φ =−3.668×10−6

Figure 17: 3-D pile cap example, double-symmetric quarter
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are applied to the pile cap. Optimizing the distribution of rebars leads to a 27% improvement in load-bearing
capacity compared to the initial design. Despite the relative simplicity of this test case, the prospects of
utilizing this procedure as a digital design tool for complex 3-D structres are clearly demonstrated.

6 Discussion

A new approach for optimizing the distribution of reinforcement bars in structural concrete was presented.
The main idea is to perform truss topology optimization where the ground structure consists of all accept-
able positions of rebars. The ground structure is embedded into the continuum concrete domain where
strain-softening response is considered by means of a nonlocal damage model. At the moment we focus on
maximizing the load-bearing capacity at a given deformation level, i.e. maximizing the end-compliance for
a certain prescribed displacement. Nevertheless, the procedure is general and other objectives, that are per-
haps more suitable for reinforced concrete design, can be easily incorporated. The developed framework that
combines nonlinear material modeling of concrete with an embedded truss ground structure as reinforcement
provides the basis for optimizing the distribution of concrete and rebars simultaneously. This application is
beyond the scope of the current study and will be addressed separately.

Observing the optimized layouts of reinforcement, it can be seen that rebars are positioned mainly in
regions where concrete is severely damaged due to high tensile strains. Additionally, some reinforcement
is used in compression in order to strengthen critical regions which are not necessarily highly damaged, for
example in the vicinity of concentrated forces. This is of course related to the compliance objective and it
is expected that for other goals, such as limiting cracking or reducing costs, somewhat different layouts may
be generated.

At this point it is difficult to compare the optimized designs to the state of the art, namely strut-and-tie
modeling. We apply only small deformations for initiating damage while strut-and-tie models assume a fully
cracked concrete domain at the ultimate load state. Nevertheless, in the near future we intend to incorporate
more advanced constitutive models for the concrete phase, which combine plasticity with either damage (e.g.
Lubliner et al. [1989], Feenstra and de Borst [1996]) or fracture (e.g. Červenka and Papanikolaou [2008]).
By considering a more realistic prediction of the concrete’s response, we believe that this approach can be
applied to both serviceability as well as ultimate limit states.

An attractive aspect of the suggested procedure is the fully digital work flow. Using CAD software, a
detailed truss ground structure can be easily defined and exported to the finite element software. Automatic
embedding of the truss elements is then performed, a rather straightforward operation if only structured grids
are used. Once the optimized topology of rebars is found, it can be exported back to the CAD system and
post-processed there for producing a final detailed drawing. Such a computational design tool can be very
effective especially for designing complex 2-D and 3-D concrete structures.
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