
Revisiting approximate reanalysis in topology optimization: On the
advantages of recycled preconditioning in a minimum weight

procedure

Oded Amir
Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology

Tel.: +972-4-8293041

odedamir@cv.technion.ac.il

This is an unformatted version of the paper, published online in SMO, May 2014.

1 Abstract
An efficient procedure for three-dimensional continuum structural topology optimization is proposed. The approach is
based on recycled preconditioning, where multigrid preconditioners are generated only at selected design cycles and
re-used in subsequent cycles. Building upon knowledge regarding approximate reanalysis, it is shown that integrating
recycled preconditioning into a minimum weight problem formulation can lead to a more efficient procedure than the
common minimum compliance approach. Implemented in MATLAB, the run time is roughly twice faster than that of
standard minimum compliance procedures. Computational savings are achieved without any compromise on the quality
of the results in terms of the compliance-to-weight trade-off achieved. This provides a step towards integrating interactive
3-D topology optimization procedures into CAD software and mobile applications. MATLAB codes complementing the
article can be downloaded from the author’s personal webpage.

Keywords : Topology optimization; Recycled preconditioning; Reanalysis of structures; Combined approximations

2 Introduction
This article addresses the efficient computational solution of a classical problem in structural topology optimization of
continua: Find the material distribution that represents the best trade-off between stiffness and weight. The respective
problem formulations typically involve a very large number of design variables and only a few constraints. For such cases
the nested approach is often preferable, meaning that optimization is performed in the design variables only and that the
equilibrium equations are treated as function calls and solved separately. Then the computational effort invested in opti-
mization is often dominated by the effort involved in repeated structural analyses, i.e. solving a sequence of large systems
of linear equations. For 2-D problems direct sparse solvers, typically based on LU or Cholesky decompositions, can be
very efficient and are often preferred (e.g. Davis, 2006). However, for 3-D problems of medium and large scale, solution
time and memory requirements of direct solvers increase significantly. Then iterative equation solvers hold an advantage,
in particular if parallel computations are considered (Saad, 2003). The linear equation systems arising from linear elas-
tic modeling are symmetric and positive-definite. Therefore from the family of iterative Krylov subspace methods, the
preconditioned conjugate gradients method (PCG) is a natural choice for 3-D structural topology optimization.

The desire to speed up computational topology optimization procedures motivates several complementary research
trajectories: Examining the application of multiple computational scales and resolutions, thus avoiding the inherent high
cost of solving sequences of finite element analyses on a fine mesh; developing highly scalable computational procedures
that can fully exploit the increasing availability of high performance parallel computers; and deriving effective procedures
that can reduce the computational effort invested in sequential structural analysis. Contributions to each of these research
efforts are reviewed in the following.

Multi-resolution multi-scale topology optimization where optimization is performed while progressively refining the
grid was initially suggested by Kim and Yoon (2000). This work was later extended by Kim et al (2003) who applied
adaptive wavelet-Galerkin analysis to multi-scale topology optimization. Stainko (2006) proposed a multilevel scheme
where optimization is first performed on a coarse grid, which is then adaptively refined in the interface between solid
and void. More recently, a multi-resolution topology optimization (MTOP) scheme was suggested, where the density
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distribution is realized on a finer scale than the displacements (Nguyen et al, 2010, 2012). MTOP is in fact currently
implemented in the TopOpt app for achieving high resolution designs at a low computational expense (Aage et al, 2013).

Early implementations of parallel topology optimization procedures focused on achieving parallel scalability - mean-
ing that for a given problem size computational speedup is inversely proportional to the number of processors. Parallel
implementation of minimum-compliance structural topology optimization was first accomplished by Borrvall and Pe-
tersson (2001). They used a domain decomposition strategy and PCG with Jacobi (diagonal) preconditioning, yielding
85%-95% parallel efficiency on up to 24 processors. A similar parallelization strategy was employed by Kim et al (2004),
but for more demanding objectives involving maximization of eigenvalues. Vemaganti and Lawrence (2005) compared the
parallel performance of three solvers: PCG with Jacobi preconditioning; PCG with incomplete LU (ILU) preconditioning;
and a hybrid iterative-direct substructuring solver. They found the hybrid solver to be most effective, due to the difficulty
of the Jacobi preconditioner to mitigate ill-conditioning of the equation system and due to the sequential nature of the ILU
solver. However, they discuss only 2-D problems whereas for 3-D cases the conclusions may have been different. Another
contribution based on Jacobi PCG was provided by Mahdavi et al (2006), who by utilizing parallel computations achieved
a speedup of up to 6 with 32 processors. Again, only 2-D problems were discussed. Excellent parallel scalability was
achieved by Aage and Lazarov (2013), who developed an object-oriented parallel framework for large-scale 3-D topology
optimization. Linear speedup was reported on up to 800 processors, partly due to full parallelization of the optimization
algorithm (MMA, (Svanberg, 1987)).

The contributions reviewed above did not address one of the main challenges in implementing parallel topology
optimization procedures, that is achieving numerical scalability: This requires that the computational complexity will
increase linearly with problem size. Using Jacobi and incomplete factorization preconditioners, the number of PCG
iterations increases with mesh refinement, meaning the procedure is not scalable regardless of the parallel scalability. An
important step towards numerical scalability was provided by Evgrafov et al (2008), who implemented a parallel domain
decomposition solver (FETI-DP, (Farhat et al, 2001)). The number of CG iterations performed still increased with the
number of DOF, but less significantly than in previous studies: A few hundred CG iterations were required in large-scale
3-D problems compared to a few thousands as reported by Borrvall and Petersson (2001). As pointed out also by Aage
and Lazarov (2013), the path towards parallel and numerical scalability passes through the combination of an effective
parallel framework with advanced linear solvers such as FETI or multigrid methods (e.g Trottenberg et al, 2001). It
should be noted that from the perspective of parallel processing, utilization of massively parallel GPU systems is also
very promising. Effort has been invested recently in efficient implementation of topology optimization in GPU systems,
for example Wadbro and Berggren (2009), Schmidt and Schulz (2011), Suresh (2013) and Zegard and Paulino (2013).

Apart from developing efficient parallel implementations, speedup of topology optimization can also be achieved by
reducing the computational effort on the procedural level. An important contribution in this direction was provided by
Wang et al (2007), who used an iterative MINRES solver for large-scale 3-D minimum compliance problems. Compu-
tational time was reduced by a combination of rescaling for avoiding ill-conditioning; preconditioning with incomplete
factorization; and exploiting the small changes between subsequent linear systems by recycling Krylov subspaces. An-
other related approach is based on utilizing approximate reanalysis procedures, essentially performing a fully accurate
structural analysis only at selected design cycles and faster approximate reanalysis otherwise. The full integration of such
a method into minimum-compliance topology optimization procedures, following Kirsch’s Combined Approximations
(CA) approach (Kirsch, 1991), was initially presented by Amir et al (2009). An extension towards reanalysis-based topol-
ogy optimization for free vibrations was formulated subsequently (Bogomolny, 2010). Kirsch’s CA was integrated also
into truss optimization with frequency constraints solved by genetic algorithms (Zuo et al, 2011).

The purpose of the current study is to revisit the integration of approximate reanalysis into topology optimization
procedures and to offer significant improvements with respect to the original contribution. These build upon new insight
coming from recent investigations on utilizing approximate reanalysis in robust topology optimization (Amir et al, 2012)
and on multigrid preconditioned conjugate gradients (MGCG) solvers in 3-D topology optimization (Amir et al, 2013).
The main difference between the proposed reanalysis-based approach and its predecessor is in adopting a minimum-
weight formulation rather than a minimum-compliance formulation. The inherent computational advantage of the former
is thoroughly discussed throughout the article. The current work is directed primarily towards facilitating efficient im-
plementations on a single CPU so to serve the integration of 3-D topology optimization into CAD software, e.g. within
the Grasshopper-Rhino TopOpt component released recently; as well as into applications for mobile devices such as the
TopOpt app (Aage et al, 2013). Parallel procedures are not of primary concern in this work, but much of the conclusions
arising are indeed applicable also to large-scale topology optimization problems. Most importantly, the MGCG solver
was shown to exhibit numerical scalability in topology optimization problems: The number of MGCG iterations remains
constant with mesh refinement (Amir et al, 2013).

Utilizing approximate reanalysis introduces certain errors in the design sensitivities of any functional involving dis-
placements. Consistent sensitivity analysis that accounts for these errors was derived both in the context of traditional CA
(Amir et al, 2009) as well as in the PCG framework (Amir et al, 2010, 2012). However, as pointed out in the abovemen-
tioned studies, accepting approximate sensitivities while controlling the accuracy of reanalysis is often a more effective
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approach. Therefore in the current study only approximate design sensitivities are utilized and accuracy is ensured by
monitoring one of the following measures: 1) The relative norm of residual forces; or 2) The error obtained in the design
sensitivities, in particular using criterion (II) as defined by Amir et al (2013). Another possibility which may be explored
in the future is to adopt the alternative convergence criterion for PCG which basically monitors the convergence of the
required functional (Amir et al, 2010). For the particular case of compliance this resembles Arioli’s stopping criterion for
PCG (Arioli, 2004).

The central message communicated in this article is that once reanalysis is employed, it is advantageous to use a
minimum weight problem formulation rather than the more popular minimum compliance formulation. The basis for this
idea is described in Section 3 where we first review the general principles of reanalysis-based approaches and then present
the motivation for adopting the minimum weight objective. The computational implementation is discussed in Section 4
where the proposed procedure is benchmarked versus existing approaches in 2-D. The benefits of the minimum weight
formulation are demonstrated and the extension to 3-D using an MGCG framework is explained. Once the discussion is
shifted towards the context of iterative solvers for 3-D problems, the concept of reanalysis is replaced by the similar idea
of recycled preconditioning. Building upon the insight gained from studying reanalysis procedures in 2-D, significant
savings are achieved in 3-D problems by recycling preconditioners within the MGCG framework. Several examples are
presented in Section 5 and conclusions are drawn in Section 6.

3 Reanalysis-based approach to topology optimization
The article presents an efficient computational approach to the solution of a classical task in structural topology optimiza-
tion: Find the material distribution that represents the best trade-off between stiffness and weight. This can be stated either
as a minimization of compliance (maximization of stiffness) subject to a constraint on weight, or vice-versa - minimiza-
tion of weight subject to a constraint on compliance. In principle, both approaches should lead to the same solution. In
practice however, different solutions representing equivalent stiffness-to-weight trade-offs may be obtained. This is due
to the non-convex nature of the topology optimization problem which possesses many local minima.

In an industrial setting, the choice between minimizing compliance or minimizing weight can depend on the specific
purpose as well as on the information available to the design engineer. Based on existing designs and performance re-
quirements, reasonable target values for constraining weight or compliance can be obtained. In the examples presented
throughout the article, minimum compliance optimization is first performed, followed by a minimum weight optimiza-
tion. This is in order to conduct a fair comparison of the resulting volume-to-compliance trade-offs obtained by the two
formulations. For each test case, we first obtain a minimum compliance result that later serves as a benchmark. It is
important to note that the relative advantages of the reanalysis-based approach are not related to the choice of executing
compliance minimization first - this is merely in order to obtain a value for constraining the compliance, which in a true
industrial setting will be available to the designer.

3.1 Standard problem formulations with accurate analysis
The two problem formulations are hereby briefly reviewed for the sake of completeness. As mentioned above, the nested
approach is followed, meaning that structural analysis is separated from optimization. For simplifying the presentation,
standard ingredients of topology optimization procedures are utilized. This does not imply any loss of generality because
various computational approaches to topology optimization share the same basic formulation. We follow the density-
based approach (Bendsøe, 1989) and apply the modified SIMP interpolation scheme relating density to elastic stiffness
(Sigmund and Torquato, 1997)

E(ρ) = Emin +(Emax−Emin)ρ
p

where E(ρ) is Young’s modulus of the interpolated material; ρ is the material density; Emin and Emax correspond to the
two materials that are distributed in the design domain; and p is the penalization power. This representation is more
general than the classical SIMP (Bendsøe, 1989; Zhou and Rozvany, 1991) which can be deduced by setting Emin = 0.
Mesh-independence and regularization are treated by either sensitivity filtering (Sigmund, 1997; Sigmund and Maute,
2012) or density filtering (Bruns and Tortorelli, 2001; Bourdin, 2001). For distributing a single material, weight can be
substituted by volume so the minimum compliance optimization problem has the following form

min
ρ

fc = fTu

s.t.: gv =
N

∑
e=1

veρ̄e−V ? ≤ 0

0≤ ρe ≤ 1 e = 1, ...,N
with: K(ρ̄)u = f (MinC)
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where ρ represents the mathematical (non-filtered) density distribution; ρ̄ represents the physical (filtered) density dis-
tribution, which differs from ρ if density filtering is applied; K(ρ̄) is the stiffness matrix; f is the load vector; u is the
displacements vector; ve is the element volume; V ? is the total available volume; and N is the number of finite elements,
which coincides with the number of design variables if no design restrictions are imposed. Swapping the objective and
constraint gives the following minimum volume problem formulation

min
ρ

fv =
1
V

N

∑
e=1

veρ̄e

s.t.: gc = fTu− c? ≤ 0
0≤ ρe ≤ 1 e = 1, ...,N

with: K(ρ̄)u = f (MinV)

where V is the total volume of the design domain and c? is the required compliance. Design sensitivities of the compliance
functionals are computed by the adjoint method and are given by

∂ fc

∂ ρ̄e
=

∂gc

∂ ρ̄e
=−uT ∂K

∂ ρ̄e
u. (1)

In case density filtering is applied, the derivatives with respect to the mathematical variables are then obtained by the
chain rule. Using the computed gradients of the objectives and of the constraints, both problems can be solved by either
optimality criteria (OC) procedures or by more general nonlinear programming methods.

For solving the minimum compliance problem we follow the 88-line code by Andreassen et al (2011) implemented
in MATLAB (MATLAB, 2013). Within the OC procedure, a bi-section scheme is used there to ensure the linear volume
constraint is satisfied. Solving the minimum volume problem by a similar optimality criteria approach requires approxi-
mating the nonlinear constraint. This leads to a slightly more involved treatment compared to the minimum compliance
formulation. The procedure will be described in Section 4.

3.2 Employing approximate reanalysis procedures
In the process of sequential optimization it is required to solve the sequence of linear systems

K(ρ̄k)uk = f (2)

where the index k corresponds to the design cycle. It is assumed here that f is design-independent but this does not imply
any loss of generality. The term reanalysis refers to replacing Eq. (2) with(

K(ρ̄k−l)+∆K
)

uk = f

where ∆K = K(ρ̄k)−K(ρ̄k−l) and the index k− l corresponds to a certain design cycle preceding k. Later in the paper
the stiffness matrix K(ρ̄k−l) will be referred to as the reference stiffness matrix - corresponding to a design cycle where
accurate analysis is performed. Approximate reanalysis aims at finding an approximation ũ that will be sufficiently
accurate for the purpose of optimization,

ũk ≈ uk

K(ρ̄k)ũk ≈ f.

In Kirsch’s Combined Approximations (CA) approach to approximate reanalysis, the displacements are expressed by
the series

ũk ≈
(

I−K
(
ρ̄k−l

)−1
∆K+

(
−K

(
ρ̄k−l

)−1
∆K
)2

+(
−K

(
ρ̄k−l

)−1
∆K
)3

+ ...

)
uk−l (3)

where an accurate solve is performed at design cycle k− l yielding K(ρ̄k−l)uk−l = f. The main feature of CA is the
utilization of only a few series terms from Eq. (3). In traditional implementations, these serve as basis vectors in a reduced
basis solution. For a detailed discussion of the method and its applications the reader is referred to the monographs
by Kirsch (2002, 2008). Consistent integration of CA into topology optimization procedures was first presented by
Amir et al (2009) for minimum compliance problems. The approach was later extended also for objectives involving
eigenfrequencies (Bogomolny, 2010).
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It was shown that the CA procedure is mathematically equivalent to a PCG procedure where the factors of K(ρ̄k−l)
serve as preconditioners (Kirsch et al, 2002). Assuming positive definiteness of both K(ρ̄k−l) and K(ρ̄k), the Cholesky
factorization UT

k−lUk−l = K(ρ̄k−l) is used to precondition the system of equations given in Eq. (2). Hence the concept
of reanalysis can be seen as a specific form of the more general recycled preconditioning: The factorization UT

k−lUk−l =
K(ρ̄k−l) corresponding to design cycle k− l is re-used as a preconditioner in subsequent design cycles. Under certain
conditions, such recycled preconditioning can yield an accurate solution, as is the case also with CA. In many cases
however, the aim is to generate an approximation ũk using only a small number of PCG iterations. This is equivalent
to approximate reanalysis where only a few basis vectors are utilized. In the context of topology optimization, such a
procedure was implemented using only one matrix factorization for the whole design process (Amir and Sigmund, 2011).
The superior numerical robustness of the PCG implementation, in comparison with traditional CA implementations that
utilize Gram-Schmidt orthogonalization, was recently demonstrated (Amir et al, 2012). The shift of terminology from
reanalysis to recycled preconditioning is absolutely necessary once the extension to 3-D problems is discussed. This
is because matrix factorizations become impractical and preconditioned iterative solvers are used throughout all design
cycles. This point will be further elaborated in Section 4.3.

3.3 Advantages of stiff preconditioning
A successful application of approximate reanalysis relies to a large extent on the choice of the reference stiffness matrix
which is the one decomposed by Cholesky factorization and then used to precondition subsequent systems. When applying
approximate reanalysis for robust topology optimization it was shown that a very effective choice of a reference design is
to use the stiffest design among the set to be evaluated - i.e. the most dilated in the context of robust topology optimization
(Amir et al, 2012). This observation will be briefly reviewed here while more thorough derivations can be found in the
referenced article. The effectiveness of using a stiffer reference design, or in other words stiff preconditioning, is related
to some basic properties of the Combined Approximations approach.

Consider a demonstrative scenario where two different designs are to be evaluated - one accurately and the other by
reanalysis. Their corresponding stiffness matrices are denoted K1 and K2 and let us assume that the first design is stiffer,
i.e. K1 �K2. The main argument is that it is more effective to use K1 as the reference design rather than vice-versa. When
K1 plays the role of the reference structure the series in Eq. (3) is guaranteed to converge, regardless of the magnitude
of changes in stiffness ∆K = K2−K1. In the opposite case where K2 is the reference design, divergence may occur if
the difference in stiffness ∆K = K1−K2 is large. Furthermore, for any given pair of designs convergence of the series in
Eq. (3) is faster if the stiffer design plays the role of the reference design. This is because the convergence rate increases
as the ratio between the norms of ∆K and of the reference stiffness decreases. Consequently, also the PCG procedure
converges faster if the preconditioner is stiffer than the evaluated design. For clarification, choosing an arbitrarily stiff
reference design will not yield fast convergence, because the norm of ∆K will be large. Maintaining small design changes
between the reference and the evaluated design, thus small values in ∆K, is necessary for achieving good convergence.
The advantage of stiff preconditioning merely suggests that for a given magnitude of ∆K, it is beneficial to use the stiffer
design as the preconditioner.

The advantages of stiff preconditioning imply that significant improvements can be offered compared to the original
integration of CA into topology optimization. Initially, compliance was minimized subject to a volume constraint. This
means that as optimization progressed, the design in general stiffened by making better use of a constant available volume.
Therefore in the context of reanalysis we had K(ρ̄k−l) ≺ K(ρ̄k), or in other words reanalysis was performed with a soft
reference design because it utilized a factorization from an earlier design cycle. By switching to minimization of volume
subject to a constraint on compliance, the benefits of stiff preconditioning can be exploited. Particularly in the early
design cycles, material is removed until the constraint is active - meaning the design is in general softened as optimization
progresses. As will be shown, also in later design cycles the slackness of the compliance constraint tends to decrease as
optimization progresses. In other words, compliance in general increases meaning that reanalysis is very likely to involve
a stiff preconditioner and a softer reanalyzed design, i.e. K(ρ̄k−l) � K(ρ̄k). This leads to a very efficient minimum
volume procedure which will be presented and demonstrated in the following section.

4 Reanalysis-based minimum volume formulation
This section is dedicated to the presentation and demonstration of the proposed reanalysis-based topology optimization
procedure for minimizing volume subject to a compliance constraint. First, an adaptation of the common optimality
criteria scheme is discussed. This is necessary for enabling efficient implementation in the relevant computational en-
vironments, namely Rhino-Grasshopper and mobile devices. Nevertheless the same reanalysis-based approach can be
coupled with general nonlinear programming methods and the same computational benefits are expected. Accuracy and
efficiency of the approach are discussed based on a demonstrative test case. The approach is compared against standard
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procedures, i.e. involving full structural analysis, and against reanalysis-based procedures for minimizing compliance
subject to a volume constraint.

4.1 Adapted optimality criteria
A very common approach for solving the minimum compliance problem presented in Eq. (MinC) is by applying the clas-
sical optimality criteria update scheme (e.g. Bendsøe and Sigmund (2003) and references therein). Within every design
cycle, redistribution of material is driven by a constant strain energy density. The Lagrange multiplier corresponding to the
linear volume constraint is then found by a simple bi-section scheme. The update of density distribution is consequently
rescaled, followed by an update of the Lagrange multiplier. This is repeated until the volume constraint is satisfied up to
a certain tolerance.

Minimizing volume subject to a compliance constraint introduces a certain difficulty due to the nonlinearity of the
compliance functional. In principle, structural analysis is required after every update of the material distribution in order
to evaluate the constraint correctly. This is clearly not preferable because it will increase the number of costly equilibrium
analyses. Therefore it is suggested to apply the bi-section scheme on an approximate prediction of the constraint, based
on first-order information in the current design cycle. This implies that in some design cycles the optimality criteria pro-
cedure may result in infeasible designs. Nevertheless, the approximate prediction becomes more accurate as optimization
progresses because design changes decrease. This was also mentioned in the context of the COC algorithm (Rozvany
and Zhou, 1992). Numerical experiments have been conducted with both linear and reciprocal approximations of the
constraint, the latter inspired by the fundamental ideas behind CONLIN and MMA (Fleury and Braibant, 1986; Svanberg,
1987).

The implemented optimality criteria approach can be summarized as follows. Beginning with a full design domain,
uniform reduction of density is performed in the first design cycles, until a linearized prediction of the constraint is
violated. In all subsequent design cycles, a heuristic updating scheme is applied which is essentially the same as in
common minimum compliance implementations (Sigmund, 2001; Andreassen et al, 2011)

ρ
k+1
e (Λ) =


max(10−10,ρk

e −m) if ρk
e Bk

e (Λ)≤max(10−10,ρk
e −m)

min(1,ρk
e +m) if ρk

e Bk
e (Λ)≥min(1,ρk

e +m)

ρk
e Bk

e otherwise

with

Bk
e (Λ) =

− Λ

∂ fv
∂ρe

∂gc

∂ρe

∣∣∣∣
ρk

e

 1
2

.

Here, Λ is the Lagrange multiplier corresponding to the compliance constraint; m is a user-defined move limit; and the
superscripts k, k+1 represent design cycles. Using an iterative bi-section scheme, the value of Λ is determined such that
an approximation of the compliance constraint is satisfied up to some tolerance. As mentioned above, it is suggested to
utilize either linear or reciprocal approximations given by

g̃c (Λ) = gk
c +

N

∑
e=1

∂gc

∂ρe

∣∣∣∣
ρk

e

(
ρ

k+1
e (Λ)−ρ

k
e

)
≈ 0

and

g̃c (Λ) = gk
c +

N

∑
e=1

∂gc

∂ρe

∣∣∣∣
ρk

e

ρk
e

ρ
k+1
e (Λ)

(
ρ

k+1
e (Λ)−ρ

k
e

)
≈ 0 (4)

respectively, where gk
c is the value of the compliance constraint at the k-th design cycle. In the numerical investigations,

the latter provided slightly higher accuracy and exhibited more conservativeness with respect to violation of the true
constraint. Note that a non-zero lower bound is imposed on ρe in order to allow division by ρk+1

e . The bi-section scheme
is applicable for solving the minimum volume formulation just as it is for solving the minimum compliance formulation
for the following reasons: 1) The constraint is a monotonously decreasing function of Λ because increasing any density
value decreases compliance; and 2) At optimum, the constraint should be active, otherwise more material can be removed.

4.2 Accuracy and efficiency: A demonstrative test case
For demonstrating the benefits of the minimum volume formulation over the minimum compliance formulation, the
following test case is examined. We seek the optimal topology of a two-dimensional cantilever beam with two point
loads at the bottom of the free face, see Figure 1(a). The finite element (FE) mesh resolution is 200×100; the material
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properties are Emin = 10−9,Emax = 1,ν = 0.3; the density filter radius is 2.0; and the modified SIMP penalty is 3.0.
All finite elements are squares with side length of 1, meaning ve = 1. Both problem formulations are solved using the
optimality criteria approach with an iterative move limit of 0.05. In all the presented experiments, a fixed number of 200
design iterations was performed - the stopping criteria (maximum change in design smaller than 10−3) was not satisfied.

First we establish reference results corresponding to standard topology optimization procedures where a sparse Cholesky
factorization was utilized for solving the FE analysis equations. A volume fraction limit of 0.35 is imposed, meaning that
the total volume available is V ? = 0.35×N where N is the number of finite elements. The minimum compliance pro-
cedure attained an objective value of fc = 136.1. Executing a slightly modified version of the 88-line code (Andreassen
et al, 2011), avoiding unnecessary matrix-vector multiplications within the OC procedure, the run time in MATLAB was
71.1 seconds. Minimizing volume with the achieved compliance of 136.1 imposed as a constraint resulted in an optimized
volume fraction of fv = 0.35. Within the bi-section scheme, the reciprocal approximation of the constraint as in Eq. (4)
was employed. The actual compliance constraint was violated only once throughout 200 design iterations. As expected,
the run time of the minimum volume program was similar to that of the minimum compliance code: 71.8 seconds. Thus
the equivalence of both formulations in terms of computational effort is verified, for the case of accurate FE analyses.
Nevertheless, slightly different optimized layouts are obtained, see Figure 1. This demonstrates the abundance of local
minima in the vicinity of the global optimum. The results are conveniently summarized in the top two rows of Table 1.
For clarification, the choice of OC procedures rather than more rigorous nonlinear programming does not result in any
compromise with respect to the quality of the results. With the latest MATLAB implementation of MMA (Svanberg,
1987), the minimum compliance procedure attained an objective value of fc = 136.0 - just marginally better than OC.
The run time was 147.2 seconds - roughly double than with OC. The MMA-based minimum volume procedure with a
compliance of 136.1 imposed as a constraint resulted in an optimized volume fraction of fv = 0.353 - slightly worse than
with OC. Again, the run time was significantly longer than with OC - 146.6 seconds.

Table 1: Summary of results for the demonstrative test case. The minimum volume formulation holds a significant compu-
tational advantage when approximate reanalysis is employed - as can be inferred from the number of matrix factorizations
and PCG iterations.

Formulation Objective Normalized Matrix PCG
constraint factorizations iterations

Min. compliance, standard fc = 136.1 gv = 3.16 ·10−8
200 —

V ? = 0.35×N

Min. volume, standard fv = 0.35 gc =−2.65 ·10−6
200 —

c? = 136.1

Min. compliance, reanalysis fc = 136.0 gv = 7.21 ·10−7
25 565

V ? = 0.35×N

Min. volume, reanalysis fv = 0.35 gc =−3.11 ·10−6
22 369

c? = 136.1

We now turn to show that when approximate reanalysis is employed, the minimum volume formulation holds a sig-
nificant computational advantage. For both formulations, we set the following controls over the reanalysis procedure:

1. A standard Cholesky decomposition is performed every 10th design cycle, or if the approximation error (referring
to the relative norm of residual forces ‖f−Kũ‖

‖f‖ ) in the latest design cycle exceeded 10−2;

2. A maximum number of 5 PCG / reanalysis iterations is allowed;

3. The PCG / reanalysis convergence tolerance is set to 10−3, again referring to the relative norm of residual forces.

Imposing again V ? = 0.35×N, the minimum compliance reanalysis-based procedure attained an objective value of
fc = 136.0. Throughout the 200 design cycles, 25 Cholesky decompositions were performed. A total number of 565
PCG / reanalysis iterations was performed within the 175 design cycles in which reanalysis was utilized, i.e. 3.23 PCG
iterations per cycle in average. With a compliance constraint of 136.1, the minimum volume reanalysis-based procedure
attained an optimized volume fraction of fv = 0.35. The actual compliance constraint was marginally violated only a few
times. Throughout the 200 design cycles, 22 Cholesky decompositions were performed. A total number of 369 PCG /
reanalysis iterations was performed within the 178 design cycles in which reanalysis was utilized, i.e. 2.07 PCG iterations
per cycle in average. These results are presented in the bottom two rows of Table 1.

Several important observations arise from the experiments presented above. The first is that both reanalysis proce-
dures succeed in reproducing the results of the fully accurate procedures. The actual accuracy-efficiency trade-off is of
course related to the control measures employed, primarily the PCG stopping criterion. For further discussion regarding
suggested stopping criteria and accuracy monitoring, the reader is referred to Arioli (2004), Amir et al (2010) and Amir

7



?

n
e
ly

 =
 1

0
0

nelx = 200

0.5

1

(a) Problem setting

(b) Minimum compliance, standard analysis (c) Minimum compliance, approximate reanalysis
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Figure 1: Topology optimization of a cantilever beam with two point loads. A fixed number of 200 design iterations
is performed. Objective values and layouts obtained by approximate procedures (c,e) are practically identical to those
obtained by standard procedures (b,d), but the minimum volume reanalysis approach promises more significant savings
in computational cost.
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Figure 2: Data from the optimization of a cantilever beam with two point loads, using both minimum compliance and
minimum volume formulations. a Number of PCG / reanalysis iterations; b Approximation errors in terms of residual
forces. Design cycles in which standard direct solves were performed were omitted. The minimum volume reanalysis
approach requires much fewer PCG iterations (in total, 369 compared to 565) and provides more accurate approximations
in terms of residual forces. Note that a maximum number of 5 PCG iterations was imposed, and the stopping criterion
was set to a relative error of 10−3.
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et al (2013). Some of the ideas suggested in this context will be examined in Section 5. The second observation is that
when reanalysis is utilized, the minimum volume formulation requires fewer matrix decompositions and fewer PCG it-
erations in comparison to the minimum compliance formulation (see also Figure 2(a)). Furthermore, the accuracy of the
approximations is improved, as can be seen in Figure 2(b). This is a direct result of the stiff preconditioning concept: In a
minimum compliance optimization process, the design is in general stiffened as optimization progresses. Thus reanalysis
is typically performed with the factors of K(ρ̄k−l) which is less stiff than K(ρ̄k). The opposite happens in a minimum vol-
ume optimization process, particularly in the early design cycles: Material is gradually removed so reanalysis is typically
performed with the factors of K(ρ̄k−l) which is stiffer than K(ρ̄k). In Figure 3 the slackness in the compliance constraint
is plotted for both accurate and approximate minimum volume procedures. Clearly the slackness tends to decrease as
optimization progresses, meaning that stiffness is gradually reduced towards the target value.

The efficiency of the minimum volume procedure is reflected also in MATLAB run time: 70.7 seconds compared to
79.8 seconds. The difference is expected to increase in larger 2-D as well as in 3-D problems. For this relatively small
2-D problem, reanalysis is not expected to be faster than standard procedures, especially not in MATLAB where a very
efficient sparse Cholesky factorization is implemented (Chen et al, 2008). Nevertheless we see that the minimum volume
reanalysis-based code is competitive even for this test case and more significant savings are reported in the following, as
well as in Section 5.
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Figure 3: The slackness in the compliance constraint plotted versus design cycles. a Standard minimum volume op-
timization; b Reanalysis-based minimum volume optimization. Clearly the slackness tends to decrease as optimization
progresses, meaning that stiffness is gradually reduced towards the target value. Reanalysis is likely to involve stiff precon-
ditioning thus its accuracy and efficiency are improved compared to reanalysis-based minimum compliance procedures.
Missing values correspond to slight violations of the constraint.

4.3 Increased efficiency by matrix-free reanalysis and extension to 3-D
In the implementation of the reanalysis procedure presented above, the stiffness matrix was assembled during every design
cycle - whether for the purpose of factorization or for performing matrix-vector products within PCG. In some cases it
can be beneficial to avoid assembly during reanalysis design cycles, hence matrix-vector products are performed in a
matrix-free manner. The difference in computational time compared to an assembly-based procedure depends on various
factors such as: The properties of the stiffness matrix; the number of PCG iterations; the computational platform; and
programming proficiency. When the number of PCG iterations is rather limited, the matrix-free implementation may
perform better. Even for the small test case utilized above, running time measured in MATLAB was further reduced by
avoiding matrix assembly in reanalysis-based design cycles: The minimum volume result reported in the bottom of Table
1 was reproduced in only 64 seconds, thus faster than both the assembly-based implementation as well as the minimum
compliance 88-line code. Further comparisons of running times are reported in Section 5.

Matrix factorizations and direct solvers are in general not suitable for effectively tackling three-dimensional problems.
Iterative equation solvers, primarily the family of Krylov subspace solvers, are then employed (see for example Saad
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(2003) for an introduction to the topic). Krylov subspace solvers are often chosen also in the context of 3-D topology
optimization (Borrvall and Petersson, 2001; Wang et al, 2007; Evgrafov et al, 2008; Aage and Lazarov, 2013). Among
the various choices of iterative solvers, multigrid-preconditioned procedures appear to be very efficient due to the optimal
computational performance of multigrid methods (e.g Trottenberg et al, 2001).

For iteratively solving equation systems arising from linear-elastic modeling, PCG is most suitable as it exploits both
the symmetry and the positive-definiteness of the stiffness matrix. The combination of CG with multigrid preconditioning
has been originally explored by Kettler (1982) and by Braess (1986). MGCG has shown to exhibit superior performance
compared to traditional PCG which typically utilizes incomplete factorizations (Tatebe, 1993; Tatebe and Oyanagi, 1994;
Ashby and Falgout, 1996). In the context of topology optimization, an MGCG procedure for minimum compliance
topology optimization was recently suggested (Amir et al, 2013). It was shown that the number of MGCG iterations
remains constant with mesh refinement, even for high-contrast layouts of solid and void. This leads to better computational
performance than that of preconditioning with an incomplete Cholesky factorization. The same MGCG framework is
utilized herein also for the 3-D extension of the proposed reanalysis-based minimum volume procedure.

Straightforward utilization of the MGCG framework in the current context is as follows. During “accurate” design
cycles in 3-D optimization, a fully accurate MGCG solve is performed instead of a Cholesky decomposition in 2-D
optimization. In subsequent “reanalyzed” design cycles, the coarse grid operators are reused for preconditioning the
equation systems hence a recycled preconditioning scheme is performed. Therefore both matrix assembly and generation
of the multigrid components are avoided. Further reduction in computational effort is possible by relaxing the conditions
for MGCG convergence within “accurate” design cycles, meaning that also in such cycles we obtain an approximation
ũ rather than exact displacements u. Two alternative stopping criteria for MGCG, related to the accuracy of the design
sensitivities, are imposed as suggested recently (Amir et al, 2013). These are repeated here for the sake of completeness.
Criterion (I) involves direct monitoring of all the gradients of the compliance functional given in Eq. (1) in the form∣∣∣ũT

i
∂K
∂ ρ̄e

ũi− ũT
i−1

∂K
∂ ρ̄e

ũi−1

∣∣∣∣∣∣ũT
i

∂K
∂ ρ̄e

ũi

∣∣∣ < η ∀e (5)

where i and i−1 represent two consecutive MGCG iterations within a certain design cycle; and the parameter η controls
the accuracy of the computed design sensitivities, implicitly controlling the residual forces as well. Criterion (II) relies
on the argument that when the optimization problem is far from a candidate solution (a KKT point), a strictly accurate
solution of the analysis equations may not be necessary. For intermediate densities the KKT conditions imply a constant
strain energy density

∂ fv

∂ρe
+Λ

∂gc

∂ρe
= 0. (6)

In case the residual corresponding to Eq. (6) is large, it makes sense to relax the requirement for highly accurate evaluation
of the sensitivities ∂gc

∂ρe
. Therefore criterion (II) has the form∣∣∣∣ũT
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∣∣∣∣< ∣∣∣∣ ∂ fv
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∂gc

∂ρe

∣∣∣∣
∀e |0 < ρe < 1 (7)

where the right-hand-side term is based on information from the previous design cycle.
Such a minimum volume recycled-preconditioning MGCG procedure will be demonstrated and benchmarked versus

the minimum compliance MGCG procedure in the following examples.

5 Examples
In this section we compare various computational procedures with the aim to demonstrate the benefits of the minimum
volume recycled preconditioning approach. Significant computational savings are achieved by combining the approach
proposed in Section 4 with stopping criteria of MGCG which involve direct control over the accuracy of the design
sensitivities (Amir et al, 2013). The following numerical strategies are utilized and compared:

• [MinC-ACC] Standard minimum compliance using accurate MGCG analysis;

• [MinV-ACC] Standard minimum volume using accurate MGCG analysis;

• [MinC-SM] Minimum compliance using approximate MGCG analysis with sensitivity monitoring;

• [MinV-SM] Minimum volume using approximate MGCG analysis with sensitivity monitoring;
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• [MinC-REs] Minimum compliance using recycled preconditioning with s MGCG iterations and accurate MGCG
solves when force residual exceeds a certain tolerance;

• [MinV-REs] Minimum volume using recycled preconditioning with s MGCG iterations and accurate MGCG solves
when force residual exceeds a certain tolerance;

• [MinV-MFREs] Minimum volume using matrix-free recycled preconditioning with s MGCG iterations and accurate
MGCG solves when force residual exceeds a certain tolerance;

• [MinV-SM-MFREs] Minimum volume using matrix-free recycled preconditioning with s MGCG iterations and
approximate MGCG analysis with sensitivity monitoring when force residual exceeds a certain tolerance.

In order to further demonstrate the attractiveness of the recycled preconditioning approach, and more generally the
MGCG-based solver, a comparison to another existing 3-D topology optimization code is conducted. For this purpose we
use Liu and Tovar’s code (Liu and Tovar, 2013), with both a sparse Cholesky factorization (as in the publicly available
code) and a PCG solver with an incomplete Cholesky factorization (zero fill-in). These will be labeled in the following
[MinC-Top3D-SS] and [MinC-Top3D-ICPCG], respectively.

5.1 3-D cantilever
In this example the proposed minimum volume procedure with recycled preconditioning is benchmarked versus a recent
result obtained by MGCG-based minimum compliance optimization. The design problem is of a three-dimensional can-
tilever beam with a sine-shaped load at the bottom of the free edge, see Figure 4(a) for the setup. The sine function has a
value of zero at the two corners and 1 at the midpoint. The FE mesh consists of 48×24×24 unity cubes, thus the number
of elements is N = 27,648 and the number of DOF is 91,875; the material properties are Emin = 10−9,Emax = 1,ν = 0.3;
the modified SIMP penalty is 3.0; and sensitivity filtering is applied with a radius of r =

√
3. Four multigrid levels

are utilized, meaning a direct solve is performed on a 6×3×3 grid. Within the multigrid V-cycle, a single damped Ja-
cobi smoothening cycle is performed with ω = 0.6. All experiments involve 50 design cycles with a move limit of 0.2
imposed on the optimality criteria updates. Within procedures involving recycled preconditioning, accurate or sensitivity-
monitored analysis was performed in case the recent approximation resulted in a relative residual norm exceeding 10−2.
With an available volume fraction of 0.12, Amir et al (2013) reported an optimized compliance of 3,330. The layout they
obtained, essentially by the procedure labeled [MinC-ACC], is displayed in Figure 4(b).

The results obtained with various computational procedures are summarized in Table 2. Most noteworthy is that
minimum volume matrix-free recycled preconditioning procedures [MinV-MFRE5] and [MinV-SM-MFRE5] were the
fastest for this example problem, requiring less than half the time of the standard minimum compliance implementation.
This comes with no compromise on the accuracy of the optimization process: The same objective was achieved as with
a standard minimum volume implementation, while satisfying the compliance constraint and in fact providing a slightly
better compliance-to-volume trade-off than that achieved with the minimum compliance procedure. The layout obtained
by [MinV-SM-MFRE5] is displayed in Figure 4(c). It differs from the layout in Figure 4(b), as also occurred with
previous examples in Section 4: Minimum compliance and minimum volume procedures may lead to different layouts
corresponding to distinct local minima solutions that share the same performance.

As expected, minimum compliance with recycled preconditioning fails due to divergence of the MGCG procedure
within reanalyzed design cycles: The multigrid coarse operators correspond to a less stiff design thus the spectral radius
of the preconditioned system implies inferior convergence properties and possible divergence of the multigrid V-cycle
(see e.g. Notay, 2007). This can be overcome by either imposing a very restrictive move limit so that design changes are
small, or by performing a very large number of MGCG iterations. Therefore it can be concluded that with MGCG as the
equation solver, minimum compliance optimization with recycled preconditioning appears to be impractical. This is in
complete contrast to minimum volume optimization with recycled preconditioning which is shown to be most effective.
To complement the results in Table 2, we note that the number of recycled-preconditioning design cycles for procedures
[MinV-RE5], [MinV-MFRE5] and [MinV-SM-MFRE5] was 30, 31 and 27 respectively. This means that with [MinV-
RE5] and [MinV-MFRE5] the number of accurate MGCG solves performed was 20 and 19 respectively. With [MinV-
SM-MFRE5] there were 23 assemblies followed by approximate MGCG solves, with a stopping criterion related to the
accuracy of the design sensitivities. It can be seen that the number of accurate solves, and consequently MGCG iterations,
performed when using [MinV-RE5] is slightly different than with [MinV-MFRE5]. This is because boundary conditions
are enforced differently when matrix-vector products on the fine grid level are performed without assembly.

A close look at the top two rows of Table 2 reveals a somewhat surprising result: Even the standard minimum volume
procedure is faster than minimum compliance - due to the fewer number of MGCG iterations. The number of MGCG
iterations performed at each design cycle within four selected variants is plotted in Figure 5. Examining the number of
MGCG iterations performed for achieving full accuracy, it can be seen that in the minimum compliance case this number
rises sharply over the first 20 design cycles up to 147, then in the following 30 cycles it stabilizes at approximately 70. In
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Table 2: Summary of results with various minimum compliance and minimum volume procedures, 50 optimization cycles
of a 48× 24× 24 cantilever. Minimum volume with recycled preconditioning runs more than twice faster than standard
minimum compliance.
* In Liu and Tovar’s code, the cubes appear to be of size 2×2×2, resulting in a doubling of the stiffness.
** Node numbering was modified with respect to the original code for improving the performance.

Procedure Objective Constraint MGCG/PCG it. MATLAB time Sensitivity monitoring
MinC-ACC fc = 3,330 V ? = 0.120×N 3,473 250.78
MinV-ACC fv = 0.114 c? = 3,330 2,535 211.83
MinC-SM fc = 3,330 V ? = 0.120×N 867 166.48 Cr. (I) with η = 10−1 and Cr. (II)
MinC-SM fc = 3,330 V ? = 0.120×N 760 160.34 Cr. (I) with η = 100 and Cr. (II)
MinC-SM fc = 3,330 V ? = 0.120×N 631 151.79 Cr. (I) with η = 102 and Cr. (II)
MinV-SM fv = 0.114 c? = 3,330 689 157.11 Cr. (I) with η = 10−1 and Cr. (II)
MinV-SM fv = 0.114 c? = 3,330 657 152.64 Cr. (I) with η = 100 and Cr. (II)
MinV-SM fv = 0.114 c? = 3,330 626 151.59 Cr. (I) with η = 102 and Cr. (II)
MinC-RE5 optimization failed
MinV-RE5 fv = 0.114 c? = 3,330 1,254 159.79
MinV-MFRE5 fv = 0.114 c? = 3,330 1,170 123.43
MinV-SM-MFRE5 fv = 0.114 c? = 3,330 546 113.12 Cr. (I) with η = 10−1 and Cr. (II)
MinV-SM-MFRE5 fv = 0.114 c? = 3,330 502 110.37 Cr. (I) with η = 100 and Cr. (II)
MinV-SM-MFRE5 fv = 0.114 c? = 3,330 502 113.77 Cr. (I) with η = 102 and Cr. (II)
MinC-Top3D-SS fc = 1,665* V ? = 0.120×N — 1,347.50**
MinC-Top3D-ICPCG fc = 1,665* V ? = 0.120×N 19,365** 601.14**

(a) Problem setting

(b) Minimum compliance, accurate MGCG analysis [MinC-
ACC]

(c) Minimum volume, approximate MGCG with sensitivity
monitoring and recycled preconditioning [MinV-SM-MFRE5]

Figure 4: Topology optimization of a 3-D cantilever beam. A standard minimum compliance procedure is compared to
a minimum volume procedure with recycled preconditioning. The optimized layouts obtained after 50 design iterations
differ but their structural performance is practically equivalent. The minimum volume approximate procedure runs more
than twice faster: 114.7 compared to 250.8 seconds in MATLAB on a single processor.
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the minimum volume case however, the number of MGCG iterations rises moderately over the first 20 design cycles up
to 63, then in the following 30 cycles it declines slowly to 50. This inherent advantage of the minimum volume approach
may be related to specific characteristics of MGCG or perhaps to more general consequences of employing preconditioned
Krylov methods. In any case, further research is necessary in order to fully comprehend this computational behavior. The
efficiency of approximate minimum volume procedures is also demonstrated in Figure 5: The number of MGCG iterations
performed within [MinV-MFRE5] and [MinV-SM-MFRE5] (the data refers to η = 100) is significantly smaller than within
[MinV-ACC].
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Figure 5: The number of MGCG iterations performed at each design cycle of the 3-D cantilever example. The standard
minimum volume procedure requires fewer MGCG iterations than the minimum compliance procedure - a total of 2,535
compared to 3,473. Minimum volume procedures with recycled preconditioning offer further reductions: 1,170 and 502
MGCG iterations, the latter corresponding to a sensitivity-monitored procedure.

Finally, in order to examine the efficiency of the proposed approach on a finer grid, the cantilever example is re-run on
a 80×40×40 mesh. The physical filter size is kept constant, i.e. r =

√
3∗80/48, so that the same physical layout should

be generated. The results obtained with several computational variants are presented in Table 3. With all variants, the
number of MGCG iterations is similar to the number of iterations performed on the coarser example. This is expected with
multigrid procedures that typically exhibit mesh-independent convergence. It can be seen that on the 80×40×40 mesh
the number of MGCG iterations is in fact slightly smaller than on the 48×24×24 mesh - this is because the filter size
was enlarged while the number of grid levels remained constant. Therefore fewer steps are required for the coarse-grid
solution to propagate into the filtered domain, leading to faster MGCG convergence (Amir et al, 2013). In overall, the
minimum volume procedures with recycled preconditioning are again the most efficient, thus indicating the potential also
for large-scale applications.

Table 3: Summary of results with accurate minimum compliance and various minimum volume procedures, 50 optimiza-
tion cycles of a 80×40×40 cantilever. Minimum volume with recycled preconditioning runs more than twice faster than
standard minimum compliance.
* In Liu and Tovar’s code, the cubes appear to be of size 2×2×2, resulting in a doubling of the stiffness.
** Node numbering was modified with respect to the original code for improving the performance.

Procedure Objective Constraint MGCG/PCG it. MATLAB time Sensitivity monitoring
MinC-ACC fc = 5,562 V ? = 0.120×N 2,535 1,053.31
MinV-ACC fv = 0.114 c? = 5,562 2,005 896.05
MinV-RE5 fv = 0.114 c? = 5,562 956 685.08
MinV-MFRE5 fv = 0.114 c? = 5,562 900 544.91
MinV-SM-MFRE5 fv = 0.114 c? = 5,562 440 484.71 Cr. (I) with η = 102 and Cr. (II)
MinC-Top3D-ICPCG fc = 2,780* V ? = 0.120×N 34,174** 4,974.98**
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5.2 3-D bridge
In this example the conceptual design of a three-dimensional bridge structure is presented. The bridge is subject to a
uniform vertical unit load on the carriageway and fixed supports are available at the bottom corners of the design domain,
see Figure 6(a) for the setup. Exploiting double symmetry, one quarter of the design domain is discretized using a
mesh of 64×16×48 unity cubes, thus the number of elements is N = 49,152 and the number of DOF is 162,435. The
carriageway is represented by two layers of prescribed solid elements which are excluded from the optimization. The
width of the carriageway is half of the total size of the design domain in the Y-direction, i.e. occupying 8 elements.
Hence the number of elements active in the optimization is Nactive = 48,128. The length of each of the support regions
in the X-direction is a rounding of 1/12 of the total length, i.e. in the double-symmetric quarter the supports span over
a region of 11×16 elements. As in the previous example, the modified SIMP penalty is 3.0; the material properties are
Emin = 10−9,Emax = 1,ν = 0.3; and sensitivity filtering is applied with a radius of r =

√
3. Four multigrid levels are

utilized, meaning a direct solve is performed on a 8×2×6 grid. Within the multigrid V-cycle, a single damped Jacobi
smoothening cycle is performed with ω = 0.6. All experiments involve 50 design cycles with a move limit of 0.2 imposed
on the optimality criteria updates.

First a standard minimum compliance optimization is performed based on accurate MGCG analysis. With an avail-
able volume fraction of 0.1 a compliance of 4.326 ·105 is obtained. With the above compliance imposed as a constraint,
standard volume minimization leads to a volume fraction of 0.0969. For demonstrating the efficiency of the proposed ap-
proach, the same problem setting was solved also by two recycled-preconditioning minimum volume procedures, namely
[MV-MFRE5] and [MV-SM-MFRE5]. Accurate or sensitivity-monitored MGCG solves were performed in case the re-
cent approximation resulted in a relative residual norm exceeding 10−2. Results of the four experiments are presented
in Table 4. Again, the procedure labeled [MV-SM-MFRE5] required roughly half the run time needed for the standard
minimum compliance approach. Monitoring of the sensitivities was based exclusively on criterion (II) of Eq. (7) by
setting η = 102 in criterion (I) of Eq. (5). Throughout 50 design cycles, 22 cycles involved matrix assembly and an
approximate MGCG solve with sensitivity monitoring; the other 28 cycles involved matrix-free recycled preconditioning.
Significant savings are offered also by employing [MV-MFRE5] where again 22 accurate MGCG solves were performed
and 28 design cycles were based on matrix-free recycled preconditioning. The number of MGCG iterations performed
at each design cycle within the four procedures is plotted in Figure 7, highlighting the potential savings offered by the
minimum volume approach with recycled preconditioning. The volume-compliance trade-offs achieved by all procedures
are practically identical though the layouts are slightly different, see Figures 6(b) and 6(c) (only densities above 0.8 are
displayed). This again demonstrates the variety of local minima solutions that provide similar performance.

Table 4: Summary of results with various minimum compliance and minimum volume procedures, optimization of a
64×16×48 bridge (double-symmetric quarter).
* In Liu and Tovar’s code, the cubes appear to be of size 2×2×2, resulting in a doubling of the stiffness.
** Node numbering was modified with respect to the original code for improving the performance.

Procedure Objective Constraint MGCG/PCG it. MATLAB time
MinC-ACC fc = 4.326 ·105 V ? = 0.1×Nactive 2,168 354.78
MinV-ACC fv = 0.0969 c? = 4.326 ·105 1,791 320.13
MinV-MFRE5 fv = 0.0967 c? = 4.326 ·105 942 210.49
MinV-SM-MFRE5 fv = 0.0968 c? = 4.326 ·105 346 176.12
MinC-Top3D-ICPCG fc = 2.140 ·105* V ? = 0.1×Nactive 11,960** 784.21**

6 Conclusions
An efficient procedure for continuum structural topology optimization was presented. The main purpose is to provide
an effective computational approach that can facilitate the integration of 3-D topology optimization into CAD software
and mobile applications. The key point in achieving significant reduction in computational time is the exploitation of
“stiff” preconditioning arising from reanalysis-based optimization. Reanalysis concepts applicable to 2-D problems are
extended to 3-D in the form of recycled preconditioning within a general MGCG framework. It is shown that combining
recycled preconditioning with a minimum volume problem formulation leads to a more efficient procedure than the
popular minimum compliance approach.

The proposed minimum volume procedure with recycled preconditioning was benchmarked in MATLAB versus
standard procedures for both minimizing compliance and minimizing volume. Furthermore, it was favorably com-
pared to the original integration of approximate reanalysis into minimum compliance topology optimization. Results
of three-dimensional test cases clearly highlight the advantages of the proposed procedure: Run time in MATLAB was
roughly twice faster than that of standard procedures, without any compromise on the quality of the result in terms of
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(a) Problem setting

(b) Minimum compliance, standard MGCG analysis [MinC-ACC]

(c) Minimum volume, approximate MGCG with sensitivity monitoring and recycled preconditioning [MinV-SM-MFRE5]

Figure 6: Problem setting and optimized layouts obtained after 50 design iterations of the 3-D bridge example. The opti-
mized layouts differ slightly but their structural performance is practically equivalent. The minimum volume approximate
procedure runs twice faster: 176.12 compared to 354.78 seconds in MATLAB on a single processor.
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Figure 7: The number of MGCG iterations performed at each design cycle of the 3-D bridge example. The standard
minimum volume procedure requires fewer MGCG iterations than the minimum compliance procedure - a total of 1,791
compared to 2,168. Minimum volume procedures with recycled preconditioning offer further reductions: 942 and 346
MGCG iterations, the latter corresponding to a sensitivity-monitored procedure.

the compliance-to-weight trade-off achieved. A comparison with an existing implementation shows that computational
savings are also possible in 2-D, even though this is not of primary concern in the current study.

Future work will focus on gaining further insight regarding the inherent advantage of the minimum volume formu-
lation when MGCG is utilized for solving the analysis equations. Another aspect to be examined is the applicability
of the proposed approach, and more generally of the MGCG-based solvers, for topology optimization problems on un-
structured grids. Investigating the performance in parallel computational environments will also be pursued. MATLAB
codes complementing the article can be downloaded from the author’s personal webpage http://tx.technion.ac.

il/~odedamir/.
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