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Abstract

This paper presents an effective approach for achieving minimum cost designs for seismic retrofitting
using viscous fluid dampers. A new and realistic retrofitting cost function is formulated and minimized
subject to constraints on inter-story drifts at the peripheries of frame structures. The components of
the new cost function are related to both the topology and to the sizes of the dampers. This consti-
tutes an important step forward towards a realistic definition of the optimal retrofitting problem. The
optimization problem is first posed and solved as a mixed-integer problem. To improve the efficiency
of the solution scheme, the problem is then re-formulated and solved by nonlinear programming using
only continuous variables. Material interpolation techniques, that have been successfully applied in
topology optimization and in multi-material optimization, play a key role in achieving practical final
design solutions with a reasonable computational effort. Promising results attained for 3-D irregular
frames are presented and compared with those achieved using genetic algorithms.

Keywords: Topology optimization; Energy dissipation devices; Viscous dampers; Seismic retrofitting;
Material interpolation functions; Irregular structures.

1 Introduction

Earthquakes are catastrophic events that pose a threat to infrastructure, to economic systems and to
human lives. In recent years many researchers focused on delineating the best methods to mitigate the
losses caused by earthquakes using innovative means. As a result, various novel concepts for structural
protection have been proposed, are currently under development or have matured to the level of use
in practice. Modern structural protective systems can be divided into three major groups: 1) Seismic
isolation systems; 2) Passive energy dissipation systems; and 3) Active and semi-active systems. In
particular, passive energy dissipation devices are known to be effective for mitigating earthquake hazards
and hold an advantage of not requiring an external source of power, Constantinou et al. (1998). The
purpose of passive devices is to dissipate part of the input energy, thus reducing the energy dissipation
demand of structural members and consequently reducing the structural damage. The use of passive
energy dissipation devices is gaining much attention in academia and practice, and the reader is referred to
the comprehensive textbooks for more details (Soong and Dargush (1997);Takewaki (2011);Christopoulos
et al. (2006)).

Among the available passive energy dissipation systems, viscous fluid dampers have been shown to
be very effective in reducing various seismic responses. This is particularly true in the case of retrofitting
due to the out-of-phase effect that may eliminate the need for strengthening of foundations and columns
(Constantinou and Symans (1992); Lavan (2012)). Furthermore, it was shown that the use of such
dampers can reduce the sensitivity to uncertainty in structural properties, Avishur and Lavan (2010).
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The focus of this paper is on deriving an efficient optimal design approach for minimizing the actual cost
associated with retrofitting of frame structures using viscous fluid dampers.

Several authors focused on the seismic retrofitting of 3-D structures using viscous dampers (e.g. Wu
et al. (1997); Goel (1998); Takewaki et al. (1999); Goel (2000); Singh and Moreschi (2001); Lin and
Chopra (2001); Kim and Bang (2002); Lin and Chopra (2003a); Lin and Chopra (2003b); Lavan and
Levy (2006); Levy and Lavan (2006); García et al. (2007); Almazán and de la Llera (2009); Lavan and
Levy (2009); Aguirre et al. (2013); Lavan (pted), Bigdeli et al. (tted)). Some of the above mentioned
approaches define optimal distributions of dampers, treating the damping coefficients as continuous design
variables independent from one another. This makes the optimal design process computationally efficient
and applicable also to large scale problems. However, it implies that the optimized design attained may
consist of a wide variety of different damper sizes. Hence, in order to translate these solutions into
practical damper distributions, some rounding and grouping of the dampers to a limited number of size-
groups is required. While this approach may provide reasonable practical designs in some cases, there is
no guarantee of that – nor of the optimality of the interpreted design.

Other methodologies make use of discrete variables to represent the damping coefficients thus promot-
ing a small number of size-groups (e.g. Zhang and Soong (1992); Agrawal and Yang (1999); Lopez Gar-
cia and Soong (2002); Dargush and Sant (2005); Lavan and Dargush (2009); Kanno (2013)). Thus,
the attained design does not require any rounding or grouping. However, such approaches make use of
predetermined parameters for the damping, such as the dampers’ sizes, damping increments, the num-
ber of dampers or a combination of these. The values adopted for the damping parameters may have
a considerable restraining effect on the optimal solution to be attained. Furthermore, in some of the
cases mentioned above the resulting optimization problems are relatively difficult to solve, compared to
problems with continuous variables – due to the combinatorial nature of the optimization problem. This
imposes a certain limit on the number of design variables – representing damper locations and sizes –
that can be considered.

Recently, in Lavan and Amir (2014) an optimization formulation that overcomes these limitations
was presented. In their approach, viscous fluid dampers with identical properties, taken as continuous
variables and determined by the optimization algorithm rather than a-priori, were optimally allocated by
the algorithm. The objective function that was minimized was equivalent to the manufacturing cost of
the dampers. Constraints were imposed to limit the inter-story drifts of the peripheral frames, based on
time-history analyses under a suite of realistic ground motions. The nonlinear optimization problem was
solved by a sequential linear programming procedure utilizing first-order information. In other works,
two mixed-integer approaches for the optimal sizing and placement of friction dampers were proposed in
Miguel et al. (2014) and Miguel et al. (2015). They referred to the context of human-induced vibrations
on footbridges, and of structures subject to seismic loading, respectively. Binary variables were considered
to describe the existence of a damper, and continuous variables to characterize the friction forces of each
damper. In particular, in Miguel et al. (2014) the objective was to minimize the maximum acceleration
of the structure using a metaheuristic algorithm presented in Yang (2008) – the Firefly Algorithm. In
Miguel et al. (2015) the goal was to minimize the maximum inter-story drift of a shear frame, and the
maximum displacement of a transmission tower with the Backtracking Search Optimization Algorithm
recently presented in Civicioglu (2013). In both cases, the number of added dampers and the friction
forces of each damper were constrained.

In the above mentioned studies on optimal seismic retrofitting with dampers, the objective functions
considered only the cost associated with manufacturing of the dampers. In practical retrofitting, in
addition to the direct manufacturing cost, two other dominant cost components, that may sometimes
be even larger than the manufacturing cost, should be considered: a) The cost of prototype testing and
design of a damper which is proportional to the number of different damper sizes used; and b) The costs
of interfering with regular activities in the building and of mounting the dampers, both proportional to
the number of locations of the frame in which dampers are mounted.

In this paper we present and solve an optimization problem with an objective function that considers
these new cost components. Thus, the resulting cost formulation will consider the initial cost due to the
retrofitting with viscous fluid dampers. In addition, we allow the allocation of up to two dampers at
each potential location, thus enriching the space of possible design configurations. These advancements
constitute an important step towards an optimization problem formulation that adequately represents
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reality, and that can facilitate the development of computational tools that are useful for practitioners.
From a mathematical point of view, these make the optimization problem much more complex to solve.
It should be noted that in some recent work the life-cycle cost has been taken as the objective function for
similar problems (e.g. Shin and Singh (2014a); Shin and Singh (2014b); Gidaris and Taflanidis (2014)).
These approaches considered different cost components, such as the initial cost, the maintenance cost,
and the failure cost. While providing comprehensive formulations of the long term costs, they considered
relatively simple formulations of the initial cost related to the use of viscous fluid dampers. In our
approach we focus on a more thorough description of the initial retrofitting cost, which considers all the
main aspects involved and which is still formulated simply enough to serve practitioners in their activity.

In the optimization problem presented in this paper linear viscous fluid dampers from up to two
size-groups are optimally distributed in predetermined potential locations of 3D irregular frames. In each
size-group, all dampers have identical properties (e.g. damping coefficient, capacity etc.). The damping
coefficient of each size-group is a continuous design variable optimally defined in the optimization analysis.
Inter-story drifts at the peripheries are constrained to allowable values, while the above mentioned new
formulation for the initial retrofitting cost is minimized. Due to their binary nature, the new features of
the cost function considerably increase the complexity of the optimization problem. We first formulate
the problem using mixed variables. This leads to a mixed-integer formulation that can be solved by
metaheuristic algorithms such as genetic algorithms (GA). This was demonstrated in a recent short
conference paper by the authors, Pollini et al. (2014). The main contributions of the present work are
the re-formulation and the solution of the same optimization problem using only continuous variables,
leading to a more effective computational procedure. Material interpolation techniques, typically applied
in topology optimization, are used to force some of the variables to discrete values. The new cost function
is modified so that it would be continuously differentiable. Finally, the continuous formulation is solved
using a gradient-based algorithm, requiring in this way a more reasonable computational effort. The
results, in terms of optimized designs and computational performance, are compared favorably to those
achieved with the GA.

The remainder of the article is organized as follows. In Section 2 we present the variables and functions
involved, with particular attention to the new cost function. This allows us to present the original
formulation of the optimization problem, namely the mixed-integer formulation. In Section 3 we present
the continuous formulation of the optimization problem as well as various details regarding the gradient-
based approach used in the optimization process. In Section 4 the numerical results corresponding to
the optimization of realistic irregular frames are presented, including a comparison between the results
achieved with the GA and with the gradient-based algorithm. In Section 5 some final considerations and
conclusions are drawn.

2 Mixed-integer approach

In this paper we formulate and solve the optimization problem of minimizing a realistic cost of seismic
retrofitting using linear viscous fluid dampers. The dampers can be mounted in predetermined potential
locations of a frame, while the design is limited to the use of only a few damper sizes which are determined
by the algorithm. The minimization is subjected to constraints on envelope peak inter-story drifts of the
peripheral frames in a 3D irregular structure excited by a suite of ground motions. The variables adopted
to represent the damping coefficient for each size-group of dampers are continuous, while the existence of
a damper in a potential location of the frame and its belonging to a particular size-group of dampers are
expressed through discrete variables. The current implementation incorporates two possible size-groups
of dampers and up to two dampers for each potential location (see the illustrative example in Fig. 1 that
will be explained in the next section). However, due to the generality of the proposed approach it can be
extended to accommodate additional size-groups of dampers.
The optimization problem is formulated based on the following components:

- The objective function to be minimized, i.e. the cost function;

- Behavioral inequality constraints imposed on inter-story drifts;

- Behavioral equality constraints representing dynamic equilibrium;
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Figure 1: No damper, a single damper, or two dampers in the kth potential location.

- Upper and lower limits on the design variables.

2.1 Design variables and functions definitions

In this section, several variables that play an important role in the proposed formulation are introduced.
In the proposed formulation, Nd potential locations for the dampers are defined a-priori by the user.
Each potential location is a "cell" of the frame, that is, one bay of one story of a given frame. In each of
these locations, up to two dampers could be assigned. We will refer to these dampers hereafter as "the
first damper" and "the second damper". Measures will be taken such that assigning the first damper
to a given location will be more expensive than assigning the second damper. In addition, assigning
the second damper will be prevented if the first damper is not assigned at that location. The damping
coefficients of all dampers (first and second dampers in each potential location) are defined in the vector
cd as follows:

cd = c̄dx1(y1 + (y2 − y1)x2), (1)

where y1 and y2 are continuous design variables that scale the maximum damping coefficient, c̄d, to result
in the damping coefficients of the first and second size-groups, respectively. Thus, the two size-groups of
dampers are characterized by the following two damping coefficients:

c̄1 = y1c̄d, c̄2 = y2c̄d. (2)

x1 and x2 are vectors of binary variables. A value of one at a given entry of x1 indicates the assignment of
the corresponding damper while a value of zero indicates that the damper is not assigned. A value of zero
at a given entry of x2 indicates that, if the damper is indeed assigned, it belongs to the first size-group,
while a value of one indicates that it belongs to the second size-group. Note that the dimensions of the
vectors cd, x1 and x2 are 2Nd×1. The entry 2k−1 of these vectors corresponds to the first damper at the
location k while the entry 2k corresponds to the second damper at that location (Fig. 1). Consequently,
the damping coefficient added to the location k is:

cdTOT
(k) = cd(2k − 1) + cd(2k). (3)

Note that the size of the vector cdTOT
is Nd×1. Through a proper matrix transformation, which depends

on the geometry of the structure, the vector cdTOT
defines the added damping matrix Cd (Lavan and

Levy (2006)).

2.2 Objective function

One of the main aims of the present work is to propose an optimization approach for minimizing a realistic
formulation of the retrofitting cost due to the added damping in a structure. This cost function, which is
the objective function in the optimization problem, is composed of three components: J = Jl + Jm + Jp.
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The first component Jl represents the cost associated with the number of locations in which dampers
are installed. This cost entails all the aspects of preparing the structure for the damper installation
and the architectural constraint that this installation will represent. Moreover, in case of retrofitting,
the removal of existing nonstructural components is also considered. We allow the algorithm to allocate
as many as two dampers in each potential location, and it will be more expensive to allocate the first
damper in an empty potential location than to allocate the second damper in a location where a damper
already exists. The first component of the cost is defined as follows:

Jl = xT
1 Cmont, (4)

where Cmont is a 2Nd × 1 vector in which the ith component is a cost component related to the ith

component of x1. The vector Cmont is defined as follows:

Cmont = D(Cm1)


1
0
1
0
...

+D(Cm2)



0

1 + (1.5 + Cm1(1)
Cm2(2)

)(1− x1(1))

0

1 + (1.5 + Cm1(3)
Cm2(4)

)(1− x1(3))
...

 , (5)

where D is a matrix operator that transforms a vector into a diagonal matrix (similar to the "diag"
function in MATLAB); Cm1 represents the specific cost of installation of the first damper in a potential
location, its dimensions are 2Nd × 1 and it has Nd elements different from zero; Cm2 represents the cost
for each potential location of adding the second damper assuming the first damper is already installed
at that location, its dimensions are 2Nd × 1 and it has Nd elements different from zero. Both Cm1 and
Cm2 are vectors defined by the user. Because Cm1(2k − 1) ≥ Cm2(2k) ∀k, the cost of installing the
first damper in a potential location is larger than the cost of installing the second one, provided the first
damper is non-zero. The vector that multiplies D(Cm2) is defined so that it will be more expensive to
first allocate the second damper in an empty location than to allocate the first one in the same location:
Referring to the ith location, in the first case the cost will be Cm1(2i − 1) + 2.5 ×Cm2(2i) while in the
second case only Cm1(2i− 1).

In formulating Jm, we presume that the cost of a single fluid viscous damper is a function of the
peak force it is designed for and of its stroke (maximum elongation). In practice, dampers of the same
size-group are designed to have the same properties, hence a size-group of dampers is designed to take
the peak stroke expected in the most elongated damper of the same size-group. The peak stroke is
strongly correlated with the peak inter-story drift, which is constrained in our problem formulation. For
this reason damper stroke is not considered in the cost formulation. Each size-group of dampers is also
designed for the peak force of the most loaded damper of that size-group. Therefore, this peak force
should be considered in the cost. Assuming a dominant mode behavior, the velocity in the damper in
location j is proportional to ω1dj , where ω1 is the dominant frequency and dj is the envelope peak drift at
the location j. Experience shows that usually dampers are located where the drifts reach their allowable
values, that are known values. Thus the maximum velocities are known in advance and minimizing the
damping coefficient is equivalent to minimizing the peak force of the most loaded damper of a particular
size-group. The number of dampers of each size-group also has a considerable effect on the cost. Thus
the component Jm of the cost should mimic the maximum envelope peak force in the damper of any
given size-group, multiplied by the number of dampers of that size-group. It should be noted that
the cost for a single damper somewhat reduces if more dampers of its size-group are purchased Taylor
(2014). However, normally this does not have a significant effect on the optimal solution. Based on the
considerations above, the Jm component is defined as follows:

Jm = c̄dxT
1 (y11 + (y2 − y1)x2), (6)

where the vector 1 is a unit vector of size 2Nd × 1.
The third component of the cost Jp reflects the cost associated with the requirements of modern

seismic codes. These require that a prototype of each size-group of dampers is tested so as to verify
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its force-velocity behavior. Therefore, the number of different damper size-groups should be minimized.
This can be defined as follows:

Jp = Cprototype

[
H(xT

1 x2) +H(xT
1 (1− x2))

]
, (7)

where Cprototype is the cost of prototype testing and design. The functionH is the Heaviside step function:

H(x) =

{
1 for x > 0

0 for x = 0
(8)

We observe that:

- If all dampers are of the first size then Jp will be equal to Cprototype × [0 + 1];

- If all dampers are of the second size then Jp will be equal to Cprototype × [1 + 0];

- In case dampers of both sizes exist then Jp will be equal to Cprototype × [1 + 1].

2.3 Performance index

We now consider the retrofitting of a generic structure using added dampers. The damage due to
earthquakes can be divided into structural and nonstructural. Inter-story drifts, ductility demands in
the plastic hinges of structural elements, and hysteretic energy dissipated in these plastic hinges are
the responses that indicate structural damage. Ductility demands are strongly associated with the peak
inter-story drifts. The contribution of hysteretic energy to common measures of damage is relatively small
in most cases. Thus inter-story drifts serve as an appropriate measure of structural damage. Limiting
the drifts also allows one to ensure, if feasible, a linear behavior of the structure. This can be assured by
limiting the drifts to be smaller than the yield drifts. Moreover, when retrofitting using added dampers,
some structures may be designed to behave linearly under certain earthquakes. In these cases structural
damage is not expected but non-structural damage should be controlled. In general, non-structural
components are sensitive to inter-story drifts and story accelerations. However, in many cases the main
cause for their damage is the peak inter-story drift they experience, Charmpis et al. (2012). Hence
inter-story drifts are constrained here to allowable values.

The peak inter-story drift normalized by the allowable value is chosen as the local performance index
for 2-D frames, defined as

dc,i = max
t

(|di(t)/dall,i|). (9)

Here di(t) is the ith inter-story drift and dall,i is the maximum allowable value of di(t). For 3-D structures
di(t) refers to an inter-story drift of a peripheral frame. The di(t) performance indices are evaluated
through the equations of motion of a linear dynamic viscously damped system, given by:

Mü(t) + [C + Cd(cdTOT
)]u̇(t) + Ku(t) = −Meag(t) ∀t

u(0) = 0, u̇(0) = 0
(10)

where u is the displacement vector of the degrees of freedom; M is the mass matrix; K is the stiffness
matrix; C is the inherent damping matrix; cdTOT

is the added damping vector; Cd is the supplemental
damping matrix; e is the location vector that defines the location of the excitation; and ag is the ground
acceleration. A linear relation can be defined between the displacements u and the inter-story drifts d.
In fact d(t) = Hu(t), where H is a transformation matrix (Lavan and Levy (2006)). It should be noted
that the present formulation can be extended to the analysis of nonlinear structures and the algorithms
considered herein can manage such extension.
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2.4 Optimization problem - a mixed formulation

Based on the previous sections, the optimization problem can be stated as follows:

min
x1,x2,y

J = Jl + Jm + Jp

s. t.: dc,i = max
t

(|di(t)/dall,i|) ≤ 1 ∀i = 1, . . . , Ndrifts

x1,k = {0, 1} k = 1, . . . , 2Nd

x2,k = {0, 1} k = 1, . . . , 2Nd

0 ≤ yL1 ≤ y1 ≤ yU1 ≤ yL2
yU1 ≤ yL2 ≤ y2 ≤ yU2 ≤ 1

with Mü(t) + [C + Cd(cdTOT
)]u̇(t) + Ku(t) = −Meag(t) ∀t, ∀ag(t) ∈ E

u(0) = 0, u̇(0) = 0

(11)

where E is an ensemble of ground motions considered; Ndrifts is the number of drifts to be constrained;
and yL1 , yU1 , yL2 and yU2 are user-defined bounds. For optimizing the distribution and size of a single
damper size-group, only the x1 and y1 variables are necessary, thus it can be seen as a particular case of
the two-damper size-group optimization.

The problem (11) was recently solved by the authors using a GA, and it was published in a conference
proceedings Pollini et al. (2014). These solutions will be used for comparison hereafter.

3 Continuous approach

In this section we re-formulate the problem (11) using only continuous variables. We utilize material
interpolation functions in our formulation in order to reach a practical discrete solution but from a strictly
continuous formulation. The interpolation functions essentially penalize intermediate damping coefficients
thus giving preference to discrete solutions. Solution of the problem by gradient-based algorithms requires
that we rewrite the objective function with continuous variables and continuously differentiable functions.
Finally we aggregate the drift constraints into a single constraint, thus approximating the max function
through a continuous and continuously differentiable function.

3.1 Optimization problem - a continuous formulation

We first reformulate our problem using only continuous variables:

min
x1,x2,y

J = Jl + Jm + Jp

s. t.: dc,i = max
t

(|di(t)/dall,i|) ≤ 1 ∀t,∀i = 1, . . . , Ndrifts

0 ≤ x1,k ≤ 1 k = 1, . . . , 2Nd

0 ≤ x2,k ≤ 1 k = 1, . . . , 2Nd

0 ≤ yL1 ≤ y1 ≤ yU1 ≤ yL2
yU1 ≤ yL2 ≤ y2 ≤ yU2 ≤ 1

with Mü(t) + [C + Cd(cdTOT
)]u̇(t) + Ku(t) = −Meag(t) ∀t, ∀ag(t) ∈ E

u(0) = 0, u̇(0) = 0

(12)

The variables and the functions involved are the same as in (11), the difference being that in this case
we allow the variables x1,k and x2,k to obtain also intermediate values between zero and one.

3.2 Damping penalization

A practical discrete solution starting from a continuous formulation is achieved through the application
of well-established material interpolation techniques which have been developed in the last 25 years in
the field of structural topology optimization. In classical solid-void topology optimization, the use of
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material interpolation schemes such as SIMP (Solid Isotropic Material with Penalization) is the most
popular approach and has proven successful for a large number of applications (Bendsøe and Sigmund
(2003), Eschenauer and Olhoff (2001)). The idea of relaxing the binary 0-1 problem using penalized
intermediate density was originally proposed by Bendsøe (1989). Another material interpolation scheme
is RAMP (Rational Approximation of Material Properties) which is similar to the SIMP scheme in its
basic concept, Stolpe and Svanberg (2001). The basic idea of these interpolation schemes is to penalize
intermediate values of a continuous variable that varies between zero and one; in this way the intermediate
values will become uneconomical. This drives the optimized design towards 0-1 solutions (in topology
optimization this typically means void or solid). In the problem considered herein there are two vectors
of continuous variables x1 and x2, whose values vary between zero and one. Both SIMP and RAMP
were tested in the formulation of the damping coefficients (1). Similarly to Lavan and Amir (2014), the
latter was chosen for the final problem formulation, since it proved to be more effective and promising
in achieving final discrete solutions. For optimization with two sizes of dampers, the effective damping
coefficients of the two dampers in a potential location j, if they exist, are defined through a multiplication
of two RAMP functions:

c̃d(2j − 1) = c̄d
x1(2j − 1)

1 + p(1− x1(2j − 1))

(
y1 + (y2 − y1)

x2(2j − 1)

1 + p(1− x2(2j − 1))

)
;

c̃d(2j) = c̄d
x1(2j)

1 + p(1− x1(2j))

(
y1 + (y2 − y1)

x2(2j)

1 + p(1− x2(2j))

)
.

(13)

For p = 0, c̃dTOT
(j) = c̃d(2j − 1) + c̃d(2j) is a linear function of x1 and x2; increasing p causes a

penalization effect on the intermediate values of x1 and x2, thus indirectly leading to a preference for
0-1 solutions. This problem can be generalized to any number of potential damper sizes as suggested by
Hvejsel and Lund (2011) in the context of simultaneous topology and multi-material optimization.

3.3 Objective function reformulation

We now present the reformulation of the problem in terms of continuous variables. Some changes need to
be introduced in the objective function in order to obtain an effective procedure that is consistent with
the definitions made in Section 2. In fact the component of the cost Jp is characterized by a Heaviside
step function that needs to be regularized in order to be continuously differentiable. This can be done
through the exponential function (e.g. Guest et al. (2004)):

H̃(x) = 1− exp(−β x) + x exp(−β). (14)

For β = 0 the function H̃ is linear, and it tends to match the Heaviside step function as β increases. Fig. 2
displays H̃(x) for various values of β, with 0 ≤ x ≤ 1. Considering the formulation (14) Jp becomes:

J̃p = Cprototype

[
H̃(xT

1 x2/2Nd) + H̃(xT
1 (1− x2)/2Nd)

]
=

= Cprototype[(1− exp(−βxT
1 x2/2Nd) + (xT

1 x2/2Nd)exp(−β))+

+ (1− exp(−βxT
1 (1− x2)/2Nd) + (xT

1 (1− x2)/2Nd)exp(−β))].

(15)

During the analysis the value of the coefficient β grows as the function H̃ approaches increasingly the
Heaviside function. For a small value of β and argument bigger than one, the value of H̃ might become
also bigger than one, something not acceptable. Consequently, the arguments of H̃ are normalized by
their maximum value in Eq. 15. The components Jl and Jm of the cost do not need any modification.
We have thus modified the Jp component of the cost, obtaining in this way a cost function J̃ that is
continuously differentiable.

3.4 Aggregated constraint

As with the Heaviside function, the max function in (12) is also non-differentiable and needs to be
replaced with a differentiable function. Similarly to Lavan and Levy (2006), we will use an r-norm
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Figure 2: The regularized Heaviside step function for various values of β.

function equivalent to maxt(|di(t)/dall,i|). Thus dc is replaced by the approximation:

d̃c =

(
1

tf

∫ tf

t0

(D−1(dall)D(Hu(t)))rdt

) 1
r

1, (16)

where r is a large even number. Furthermore, we wish to reduce the number of constraints from Ndrifts

to 1, by aggregating them into a single constraint. The maximal component of d̃c is given by:

d̃c =
1TDq+1

(
d̃c(tf )

)
1

1TDq
(
d̃c(tf )

)
1

(17)

which is a differentiable weighted average; when q is large this weighted average approaches the value of
the maximum component of d̃c.

3.5 Final problem formulation and sensitivity analysis

Finally we can present the re-formulation of the optimization problem:

min
x1,x2,y

J̃ = Jl + Jm + J̃p

s. t.: d̃c =
1TDq+1

(
d̃c(tf )

)
1

1TDq
(
d̃c(tf )

)
1
≤ 1 ∀ag(t) ∈ E

0 ≤ x1,k ≤ 1 k = 1, . . . , 2Nd

0 ≤ x2,k ≤ 1 k = 1, . . . , 2Nd

0 ≤ yL1 ≤ y1 ≤ yU1 ≤ yL2
yU1 ≤ yL2 ≤ y2 ≤ yU2 ≤ 1

with Mü(t) + [C + Cd(c̃dTOT
)]u̇(t) + Ku(t) = −Meag(t) ∀t, ∀ag(t) ∈ E

u(0) = 0, u̇(0) = 0

d̃c =

(
1

tf

∫ tf

t0

(D−1(dall)D(Hu(t)))rdt

) 1
r

1

(18)
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In order to solve (18) we apply a Sequential Linear Programming approach (SLP), in particular the
Cutting Planes Method (Cheney and Goldstein (1959), Kelley (1960)). The sub-problems involved in
every optimization cycle make use of first-order derivatives of the objective function and of the general
constraint. The gradient of the objective function in (18) is easy to evaluate, while for the gradient of the
general constraint an adjoint sensitivity analysis procedure is needed, as presented in Lavan and Levy
(2005). In particular after rewriting (18) with the state space formulation, the gradient of the general
constraint (d̃c − 1 ≤ 0) is obtained by first writing the augmented objective function of a secondary
minimization problem of the general constraint. The variation of this augmented objective function
results in a set of differential equations and final boundary conditions to be satisfied, when all multipliers
of the variations (except δc̃dTOT

) are set to zero. The multiplier of the variation δc̃dTOT
will yield the

expression for the evaluation of the gradient ∇c̃dTOT
d̃c. This procedure thus allows us to compute the

sensitivity of the aggregated drift constraint with respect to the total physical damping coefficient at a
certain location j (i.e. ∂d̃c

∂c̃dTOT ,j
). Then the complete sensitivity is computed by the chain rule:

∂d̃c
∂x1,2j−1

=
∂d̃c

∂c̃dTOT ,j

∂c̃d,2j−1
∂x1,2j−1

;
∂d̃c

∂x2,2j−1
=

∂d̃c
∂c̃dTOT ,j

∂c̃d,2j−1
∂x2,2j−1

;

∂d̃c
∂x1,2j

=
∂d̃c

∂c̃dTOT ,j

∂c̃d,2j
∂x1,2j

;
∂d̃c
∂x2,2j

=
∂d̃c

∂c̃dTOT ,j

∂c̃d,2j
∂x2,2j

;

∂d̃c
∂y1

=

Nd∑
j=1

∂d̃c
∂c̃dTOT ,j

(
∂c̃d,2j−1
∂y1

+
∂c̃d,2j
∂y1

)
;

∂d̃c
∂y2

=

Nd∑
j=1

∂d̃c
∂c̃dTOT ,j

(
∂c̃d,2j−1
∂y2

+
∂c̃d,2j
∂y2

)
.

(19)

3.6 Algorithm implementation

As mentioned above, the optimization problem has been solved using a Cutting Planes procedure. This
approach is typically used to solve nonlinear convex problems. As the problem under consideration is both
highly nonconvex and nonlinear, some precautions are needed when implementing the proposed approach.

Selection of the ground motion. In general all the ground motions in the ensemble should be considered in
every design cycle, but such an approach would not be very efficient. A good choice of the ground motion
is one for which it remains an active constraint at the optimal solution during the process. Active means
that the excitation caused by a particular ground motion pushes the structure to its limits, or close to
them, during the entire optimization process more than the other ground motions in the ensemble. In
this work, since displacements are constrained, the record with the maximal spectral displacement has
been selected. Once the optimization with this ground motion is concluded, additional ground motions
from the ensemble are considered if the constraint is violated with one of them. The optimization and
the constraint verification repeat until the optimal solution satisfies the constraint with all the records
from the ensemble.

Managing the constraints. In the Cutting Planes Method, within each optimization cycle a linear sub-
problem is generated and solved. Within every design cycle, a new linearized constraint is added so the
linear sub-problem expands. In our case we are solving a nonconvex problem and it may happen that
some of the linearized constraints might be active even though the solution is well located within the
feasible domain, thus enforcing too conservative solutions. In such cases these constraints are nullified
and deleted in the following cycles, as proposed in Lavan and Levy (2005).

Conservative approach. The optimization problem (18) includes several components that make the prob-
lem highly nonlinear and nonconvex: the penalized damping, the aggregated constraint and the Heaviside
functions in the objective. Thus finding a good optimized solution may be difficult. In order to converge
gradually to an optimized solution, the penalizing parameter p, the parameters q and r of the aggregated
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constraint, the components of the cost Cm1, Cm2, and Cprototype, and the parameter β of the Heaviside
functions are increased gradually to their final values according to certain measures of the convergence
of the solution. Moreover, conservative move limits are also considered, limiting the feasible domains of
x1, x2, y1, and y2 to a small neighborhood of the solution of the previous sub-problem within the de-
sign iterations. Specific details regarding these settings will be given in the description of the numerical
examples.

4 Numerical examples

In this section we present and discuss several results obtained by solving the optimization problem
presented in the previous sections. As mentioned above, the continuous formulation (18) was solved by
an SLP approach – particularly the Cutting Planes method – implemented in MATLAB by the authors.
The mixed-integer formulation (11) was solved using MATLAB’s built-in GA. Based on the performance
of the two implementations, the formulations are compared in terms of the results achieved and of the
computational effort that was invested.

In particular we consider two examples of asymmetric frames made of reinforced concrete, as intro-
duced in Tso and Yao (1994). These two test cases were also solved in Lavan and Levy (2006), where an
optimal continuous damping was found, and in Lavan and Amir (2014) but yielding a discrete damping
distribution. In both examples the column sizes are 0.5 m × 0.5 m in frames 1 and 2; 0.7 m × 0.7 m
in frames 3 and 4 (see Fig. 3 and Fig. 10). The beam sizes are 0.4 m × 0.6 m and the floor mass is
uniformly distributed with a weight of 0.75 [ton/m2]. Regarding the ground motion acceleration, out of
the ensemble LA 10% in 50 years (National Information Service for Earthquake Engineering - University
of California, Berkeley (NA)), LA16 has the largest maximal displacement for reasonable values of the
periods of the structures in both examples. Hence LA16 was the ground motion to be considered first in
both examples, acting in the y direction, Lavan and Levy (2006). In the present work, we consider 5% of
critical damping for the first two modes in order to build the Rayleigh damping matrix of the structures.

4.1 Eight-story three bay by three bay asymmetric structure

A plan and two sections of the first frame to be optimized are displayed in Fig. 3. Based on the results of
Lavan and Levy (2006), 16 potential locations for dampers were assigned at the exterior frames in the y
direction. The allowable inter-story drift was set to 0.035 m. The maximum nominal damping coefficient
was set to c̄d = 50, 000 [kNs/m].

In the SLP solution, the penalizing coefficient p of the added damping was increased gradually from
0.1 up to 100. The coefficients of the cost Cm1, Cm2 and Cprototype were gradually increased by the
coefficient s so that: Cm1 = sC̄m1, Cm2 = sC̄m2 and Cprototype = sC̄prototype; s varied from 0.1 to 1. For
s = 1, Cm1 = 20, 000·[1 0 1 0 . . .]T [kNs/m], Cm2 = 10, 000·[0 1 0 1 . . .]T [kNs/m] and Cprototype = 10, 000
[kNs/m]. Also the coefficient β of the Heaviside functions was increased via the parameter s: For s = 1,
β = 100. The coefficients r and q of the aggregated constraint increased from a value of 100 with
steps of 20 during the optimization process. The variables were bounded as follows: 0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 1, 0 ≤ y1 ≤ 0.5 and 0.5 ≤ y2 ≤ 1; a move limit of 0.1 was considered. We defined four criteria
for convergence to be satisfied simultaneously: The first two require the parameters p and s to reach
their maximum values; The third requires the damping coefficients between two consecutive iterations
to be similar with a tolerance of 1%; The fourth requires all the actual drifts to be smaller than the
allowable value with a tolerance of 1%. The process converged after 461 iterations in MATLAB. The
values y1 = 0.4573 and y2 = 0.6692 were obtained, corresponding to the damping coefficients c̄1 = 22, 863
[kNs/m] and c̄2 = 33, 459 [kNs/m]. The optimized solution, in terms of the values of x1 and x2, was
not precisely binary so that some rounding was needed. The original and rounded off optimized solutions
are presented in Tab. 1.

The optimized damper size and distribution in the potential locations considering the rounded optimal
x1 and x2 are shown in Fig. 4. Fig. 5 shows the drift distribution in the optimized structure. One slight
violation occurs in location number 10 where the drift exceeds the allowable value by 0.40% (or 0.014
cm). Finally, the optimized solution obtained by the SLP procedure was tested with the other ground
motions from the ensemble. None of the other records caused any violation of the drift constraint.
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kth damper x1(2k − 1), x2(2k − 1), xrounded
1 (2k − 1), xrounded

2 (2k − 1),
location x1(2k) x2(2k) xrounded

1 (2k) xrounded
2 (2k)

1 0, 0 N/A, N/A 0, 0 N/A, N/A
2 1, 0.1027 1, 1 1, 0 1, N/A
3 1, 0 0, N/A 1, 0 0, N/A
4 1, 0 0, N/A 1, 0 0, N/A
5 0.9936, 0 0, N/A 1, 0 0, N/A

6-9 0, 0 N/A, N/A 0, 0 N/A, N/A
10 1, 0.0883 0, 0 1, 0 0, N/A
11 1, 0 1, N/A 1, 0 1, N/A
12 0.999, 0 0, N/A 1, 0 0, N/A

13-16 0, 0 N/A, N/A 0, 0 N/A, N/A

Table 1: Optimal values of x1 and x2 achieved with the SLP in Ex. 4.1 considering first only the record
LA16. The values of x2 not associated to an existing damper are irrelevant, and replaced with N/A (not
applicable).

In the GA implementation the following parameters were used: Cm1 = 20, 000 · [1 0 1 0 . . .]T [kNs/m];
Cm2 = 10, 000 · [0 1 0 1 . . .]T [kNs/m]; and Cprototype = 10, 000 [kNs/m]. The population size was set to
500. In order to guarantee the convergence of the algorithm to a global optimum with high probability,
20 different analyses were performed, of which the best solution was chosen. The variables were bounded
as follows: x1 = {0, 1}, x2 = {0, 1}, 0 ≤ y1 ≤ 0.5 and 0.5 ≤ y2 ≤ 1. In this case we defined two criteria
for convergence: The first halts the algorithm when the number of generations (i.e. iterations) reaches
the maximum number allowable Generatons – 800; The second halts the algorithm when the weighted
average relative change in the best fitness function value over StallGenLimit generations is less than or
equal to TolFun. StallGenLimit is an integer set to 300, and TolFun is a positive scalar set to 1−10.
The process converged after 301 iterations in MATLAB. The values y1 = 0.3236 and y2 = 0.6039 were
obtained, corresponding to the damping coefficients c̄1 = 16, 180 [kNs/m] and c̄2 = 30, 198 [kNs/m].
The optimized damper sizes and the distribution in the potential locations are shown in Fig. 6. Fig. 7
shows the drift distribution for the optimized damper distribution.

The solutions achieved with the two methods are characterized by similar final costs and the same
topologies. In fact the two algorithms chose to distribute the dampers in the same locations. The solutions
differ in the optimized sizes of the dampers’ groups and in the total damping added in each location.
This can be justified by the high non-convexity of the problem that causes the presence of several local
minima in proximity of the global optima. The main advantage in solving this optimization problem with
a gradient based approach is the significant reduction in computational effort needed to achieve a good
solution, compared to that of a GA. To get a satisfying solution with a GA we need to consider a big
population and to repeat several times the optimization analysis. In this case we considered a population
of 500 individuals, meaning that the algorithm performed 500 time history analyses in each iteration,
and we repeated the optimization process 20 times. On the other hand, the SLP needed to compute two
time history analyses each iteration for just one optimization process: one for the structural response and
one for the evaluation of the constraint gradient. The final solution of the SLP is also characterized by a
small constraint violation, since the SLP solves a series of linear approximations of (18). For a synoptic
comparison of the results and performances of the two approaches please refer to Tab. 2.

J̃ , J dc,max/dall c̄d1 c̄d2 Func. evaluations
[kNs/m] [kNs/m] [kNs/m] (gradient evaluations are included as function evaluations in the

SLP)

SLP 341,216 1.0040 (0.40%) 22,863 33,459 2 · 461 ≈ 102.965

GA 341,495 1 (0.00%) 16,180 30,198 20·500·301≈ 106.478

Table 2: Synthetic comparison of the solutions achieved with the SLP and the GA in Ex. 4.1 considering
only LA16. Compared to the GA, the SLP provides a solution with a very similar final cost, a very small
constraint violation, while requiring a computational effort smaller almost by four orders of magnitude.

In order to further explore the capabilities of the new cost function we performed another analysis with
the SLP considering the same structure, this time increasing the component of the cost Cprototype from
10, 000 [kNs/m] to 50, 000 [kNs/m]. Clearly it is expected that the algorithm will choose a distribution
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Figure 3: Scheme of the asymmetric 3-D frame considered in Ex. 4.1. The lengths are in meters.
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Figure 4: SLP solution. First and second damper for each location in Ex. 4.1 considering first only the
record LA16. The solution involves dampers of both the size-groups, and in the same potential locations
chosen by the GA (Fig. 6).
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Figure 5: SLP solution. Drift distribution in Ex. 4.1 considering first only the record LA16. The drift
number 10 exceeds the allowable value by the 0.40%.
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Figure 6: GA solution. First and second damper for each location in Ex. 4.1 considering first only LA16.
The solution involves dampers of both the available size-groups, and in the same potential locations
chosen by the SLP (Fig. 4).
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Figure 7: GA solution. Drift distribution in Ex. 4.1 considering first only LA16. There is no constraint
violation.
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of dampers of a single size-group. This time in the SLP the penalizing coefficient p of the added damping
was increased gradually from 0.7 up to 100, and the coefficients r and q of the aggregated constraint grew
with steps of 50 starting from a value of 100. This modifications are required to converge to a binary
solution otherwise more complicated to achieve. All other parameters were not modified, including the
criteria for convergence. The process converged after 178 iterations in MATLAB. Examining the values
obtained for x1 and x2 as presented in Tab. 3, it can be seen that these are not precisely binary. Therefore,
some simple rounding is needed in order to interpret the result to a practical engineering solution, as
presented in the 4th and 5th columns in Tab. 3. Most importantly, the interpreted design consists of
only one damper size – as expected due to the high cost related to prototype testing. The optimization
procedure yielded values of y1 = 0.3212 and y2 = 0.9701 which correspond to the damping coefficients
c̄1 = 16, 058 [kNs/m] and c̄2 = 48, 503 [kNs/m]. However, only dampers of type c̄1 = 16, 058 [kNs/m]
are actually allocated.

kth damper x1(2k − 1), x2(2k − 1), xrounded
1 (2k − 1), xrounded

2 (2k − 1),
location x1(2k) x2(2k) xrounded

1 (2k) xrounded
2 (2k)

1 0, 0 N/A, N/A 0, 0 N/A, N/A
2 1, 1 0, 0 1, 1 0, 0
3 1, 1 0, 0 1, 1 0, 0
4 1, 0 0, N/A 1, 0 0, N/A
5 0.9996, 0 0, N/A 1, 0 0, N/A

6-9 0, 0 N/A, N/A 0, 0 N/A, N/A
10 1, 0.9947 0, 0 1, 1 0, 0
11 1, 1 0, 0 1, 1 0, 0
12 1, 0 0, N/A 1, 0 0, N/A

13-16 0, 0 N/A, N/A 0, 0 N/A, N/A

Table 3: Optimal values of x1 and x2 achieved with the SLP in Ex. 4.1 with Cprototype = 50, 000 [kNs/m].
The values of x2 not associated to an existing damper are irrelevant, and replaced with N/A (not
applicable).

The optimized damper size and distribution in the potential locations considering the rounded op-
timized x1 and x2 are shown in Fig. 8. Fig. 9 shows the drift distribution for the optimized damper
distribution. The drift in the location number 1 violated the allowable value by the 0.08% (or 0.0028
cm). Finally, the optimized design solution was checked with all other records from the ensemble. None
of the maximum values of the drifts exceeded the allowable value.
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Figure 8: SLP solution. First and second damper for each location in Ex. 4.1 with Cprototype = 50, 000
[kNs/m] and considering first only LA16. Only dampers of the first size-group (c̄1 = 16, 058 [kNs/m])
are actually allocated.
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Figure 9: SLP solution. Drift distribution in Ex. 4.1 with Cprototype = 50, 000 [kNs/m] and considering
first only LA16. The drift number 1 exceeds the allowable value by the 0.08%.

J̃ dc,max/dall c̄d1 c̄d2 Func. evaluations
[kNs/m] [kNs/m] [kNs/m] (gradient evaluations are included as function evaluations in the

SLP)

SLP 406,640 1.0008 (0.08%) 16,058 N/A 2 · 178 ≈ 102.551

Table 4: Summary of the results attained with the SLP in Ex. 4.1 with Cprototype = 50, 000 [kNs/m] and
considering first only the record LA16. Only dampers of size c̄1 = 16, 058 [kNs/m] are actually allocated.

4.2 Eight-story three bay by three bay setback structure

In the second example we consider a similar 3-D frame structure but with a setback – the top 4 stories
in frames 1 and 2 are ommitted. A plan and two sections of the frame are displayed In Fig. 10. Again,
16 potential locations for dampers were assigned at the exterior frames in the y direction (Lavan and
Levy (2006)), and the allowable inter-story drift was set to 0.035 m. The maximum nominal damping
coefficient was set to c̄d = 50, 000 [kNs/m].

In the SLP procedure, the penalizing coefficient p of the added damping was increased gradually from
0.1 up to 100. The coefficients of the cost Cm1, Cm2 and Cprototype were multiplied by the coefficient s such
that: Cm1 = sC̄m1, Cm2 = sC̄m2 and Cprototype = sC̄prototype; s varied from 0.1 to 1. For s = 1, Cm1 =
20, 000 · [1 0 1 0 . . .]T [kNs/m], Cm2 = 10, 000 · [0 1 0 1 . . .]T [kNs/m] and Cprototype = 10, 000 [kNs/m].
Also the coefficient β of the Heaviside functions was increased in conjunction with the parameter s, so
that for s = 1, β = 100. The coefficients r and q of the aggregated constraint increased from a value of
100 with steps of 50 during the optimization process. The variables were bounded as follows: 0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 1, 0 ≤ y1 ≤ 0.5 and 0.5 ≤ y2 ≤ 1. Finally, a move limit of 0.1 was imposed, and the criteria
for convergence were the same as in the previous example. The optimization process converged after
276 iterations in MATLAB. The values y1 = 0.0825 and y2 = 0.5413 were obtained, corresponding to
the damping coefficients c̄1 = 4, 126 [kNs/m] and c̄2 = 27, 067 [kNs/m]. In the optimal solution only
dampers of size c̄2 = 27, 067 are actually distributed. The optimized solution as reflected in the relevant
values of x1 and x2 was exactly binary and in this case the rounding was not necessary, as can be seen
in Tab. 5.

The optimized damper size and distribution in the potential locations considering the rounded op-
timized x1 and x2 are shown in Fig. 11. Fig. 12 shows the drift distribution for the optimized dampers
distribution. The only violation occurs in location 12 where the drift exceeds the allowable value by
0.06% (or 0.0021 cm).

In the GA solution of the same example the parameters were set as follows: Cm1 = 20, 000·[1 0 1 0 . . .]T

[kNs/m], Cm2 = 10, 000 · [0 1 0 1 . . .]T [kNs/m] and Cprototype = 10, 000 [kNs/m]. The population size
was set to 500 and the maximum number of iterations was set to 800. In order to guarantee convergence
of the algorithm to a global optimum with a high probability, 20 different analyses were performed, of
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kth damper x1(2k − 1), x2(2k − 1), xrounded
1 (2k − 1), xrounded

2 (2k − 1),
location x1(2k) x2(2k) xrounded

1 (2k) xrounded
2 (2k)

1 0, 0 N/A, N/A 0, 0 N/A, N/A
2 1, 0 1, N/A 1, 0 1, N/A

3-9 0, 0 N/A, N/A 0, 0 N/A, N/A
10 1, 0 1, N/A 1, 0 1, N/A
11 1, 0 1, N/A 1, 0 1, N/A

12-16 0, 0 N/A, N/A 0, 0 N/A, N/A

Table 5: Optimal values of x1 and x2 achieved with the SLP in Ex. 4.2 considering first only the record
LA16. The values of x2 not associated to an existing damper are irrelevant, and replaced with N/A (not
applicable).

which the superior solution was chosen. The variables were bounded as follows: x1 = {0, 1}, x2 = {0, 1},
0 ≤ y1 ≤ 0.5 and 0.5 ≤ y2 ≤ 1. The criteria for convergence were the same as in the previous example.
The process converged after 301 iterations in MATLAB. The values y1 = 0.3043 and y2 = 0.5487 were
obtained, corresponding to the damping coefficients c̄1 = 15, 217 [kNs/m] and c̄2 = 27, 438 [kNs/m].
The optimized damper size and distribution in the potential locations are shown in Fig. 13. Fig. 14 shows
the drift distribution for the optimized damper distribution.
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Figure 10: Scheme of the asymmetric 3-D frame considered in Ex. 4.2. The lengths are in meters.
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Figure 11: SLP solution. First and second damper for each location in Ex. 4.2 considering first only the
record LA16. The solution involves only dampers of the second size-group (c̄2 = 27, 067 [kNs/m]) in the
same potential locations chosen by the GA (Fig. 13).
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Figure 12: SLP solution. Drift distribution in Ex. 4.2 considering first only the record LA16. The drift
number 12 exceeds the allowable value by the 0.06%.
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Figure 13: GA solution. First and second damper for each location in Ex. 4.2 considering first only LA16.
The solution involves dampers of both the available size-groups in the same potential locations chosen
by the SLP (Fig. 11).

Also in this example the two solutions were very similar in terms of final costs, identical looking at
the optimal topologies, and different in terms of the total added damping for each potential location.
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Figure 14: GA solution. Drift distribution in Ex. 4.2 considering first only LA16. There is no constraint
violation.

The computational effort required by the SLP to achieve the solution was also in this case much smaller
than that of the GA. Looking at the Function Evaluations of Tab. 6 it is possible to verify that the ratio
between the computational efforts of the SLP and of the GA is approximately 1 : 5000. Also in this
case the GA needed to execute 500 time history analyses in each iteration, for 20 different optimization
processes, while the SLP needed to perform only two analyses in each iteration for the same reasons
mentioned in Ex. 4.1. The solution achieved with SLP still slightly violates the constraint because of the
linear approximation of (18). To compare the results and performances of the two approaches please
refer to Tab. 6.

J̃ , J dc,max/dall c̄d1 c̄d2 Func. evaluations
[kNs/m] [kNs/m] [kNs/m] (gradient evaluations are included as function evaluations in the

SLP)

SLP 151,202 1.0006 (0.06%) N/A 27,067 2 · 276 ≈ 102.742

GA 150,093 1 (0.00%) 15,217 27,438 20·500·301≈ 106.478

Table 6: Synthetic comparison of the solutions achieved with the SLP and the GA in Ex. 4.2 considering
first only LA16. In the solution of SLP only dampers of size c̄2 = 27, 067 [kNs/m] are actually allocated.

The optimized rounded solution obtained by the SLP procedure was tested with the other ground
motions from the LA 10% in 50 years ensemble. With two of the records, namely LA14 and LA18,
a constraint violation was encountered. Since LA14 had the largest constraint violation (see Tab. 7),
another optimization process was initiated with both LA16 and LA14 considered as ground excitations.

Record max (dc,i/dall) Record max (dc,i/dall)

LA01 0.6015 LA11 0.6141
LA02 0.8066 LA12 0.7724
LA03 0.5103 LA13 0.9918
LA04 0.4173 LA14 1.0411
LA05 0.3475 LA15 0.8188
LA06 0.3065 LA16 1.0006
LA07 0.4108 LA17 0.6152
LA08 0.4600 LA18 1.0123
LA09 0.7030 LA19 0.8117
LA10 0.4420 LA20 0.8106

Table 7: Maximum dc,max/dall for each record from LA 10% in 50 years evaluated considering the
structure with the optimal distribution of dampers. This distribution is the one achieved with the SLP
considering only LA16 in Ex. 4.2.
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In this case, the penalizing coefficient p of the added damping was increased gradually from 0.7 up
to 150. When considering two ground motions simultaneously, it becomes more problematic to achieve
a binary solution that does not need much final rounding. Therefore, the final value of the penalizing
coefficient assumes an important role for a good convergence of the problem: raising it to 150 helps
converging very close to a binary solution. All other parameters were set as before, including the criteria
for convergence. The process converged after 197 iterations in MATLAB, with a final cost J̃ = 184, 018
[kNs/m]. The values y1 = 0.1603 and y2 = 0.5 were obtained, corresponding to the damping coefficients
c̄1 = 8, 013 [kNs/m] and c̄2 = 25, 000 [kNs/m]. Looking at the solution, it appeared that the algorithm
tried to reduce the value of y2 below its lower bound. Thus, we conducted another analysis shifting the
lower bound of y2 (i.e. upper bound of y1) from 0.5 to 0.4. This time the analysis converged after 187
iterations in MATLAB, with a final cost J̃ = 173, 833 [kNs/m]. The values y1 = 0.2049 and y2 = 0.4268
were obtained, corresponding to the damping coefficients c̄1 = 10, 247 [kNs/m] and c̄2 = 21, 342 [kNs/m].
The modification of the boundaries of y1 and y2 was beneficial, since the algorithm converged to a better
solution. As in the previous cases, the optimized x1 and x2 were not precisely binary and some minor
rounding was performed. The original and rounded off optimized solutions are presented in Tab. 8.

kth damper x1(2k − 1), x2(2k − 1), xrounded
1 (2k − 1), xrounded

2 (2k − 1),
location x1(2k) x2(2k) xrounded

1 (2k) xrounded
2 (2k)

1 0, 0 N/A, N/A 0, 0 N/A, N/A
2 1, 0 0.9928, N/A 1, 0 1, N/A

3-9 0, 0 N/A, N/A 0, 0 N/A, N/A
10 1, 0 1, N/A 1, 0 1, N/A
11 1, 0 1, N/A 1, 0 1, N/A
12 1, 0 0, N/A 1, 0 0, N/A

13-16 0, 0 N/A, N/A 0, 0 N/A, N/A

Table 8: Optimal values of x1 and x2 achieved with the SLP in Ex. 4.2 considering simultaneously LA14
and LA16. The values of x2 not associated to an existing damper are irrelevant, and replaced with N/A
(not applicable).

The optimized damper sizes and distribution in the potential locations considering the rounded op-
timized x1 and x2 are shown in Fig. 15. Fig. 16 shows the drift distribution for the optimized damper
distribution. Only with the record LA16 the drift number 10 slightly exceeds the allowable value by
0.48% (0.0168 cm). Finally, the design solution respected the drift constraint for all the other records
from the ensemble LA 10% in 50 years.

0 1 2 3

x 104

1

2

3

4

5

6

7

8

1st damper

L
oc

at
io

n 
ID

[kNs/m]
0 1 2 3

x 104

1

2

3

4

5

6

7

8

2nd damper

L
oc

at
io

n 
ID

[kNs/m]
0 1 2 3

x 104

9

10

11

12

13

14

15

16

1st damper

L
oc

at
io

n 
ID

[kNs/m]
0 1 2 3

x 104

9

10

11

12

13

14

15

16

2nd damper

L
oc

at
io

n 
ID

[kNs/m]

Figure 15: SLP solution. First and second damper for each location in Ex. 4.2 considering LA14 and LA16
simultaneously. The optimal distribution of damper resembles the one attained previously considering
only LA16 (Fig. 11), but with the addition of a small damper in the 12th location.

In both Ex. 4.1 and Ex. 4.2 it can be seen that the SLP and the GA converged exactly to the same
topological layout: Both procedures chose to allocate dampers in the same potential locations. At the
same time, the two solutions differ slightly in the optimized damping coefficients for each size group
of dampers and in the dampers’ distribution within the chosen potential locations. Nevertheless, the
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Figure 16: SLP solution. Drift distribution in Ex. 4.2 considering LA14 and LA16 simultaneously. For
each drift is plotted the worst scenario. The drift number 10 exceeds the allowable value by the 0.48%
due to the record LA16.

J̃ max(dc,max/dall) c̄d1 c̄d2 Func. evaluations
[kNs/m] [kNs/m] [kNs/m] (gradient evaluations are included as function evaluations in the

SLP)

SLP 173,833 1.0048 (0.48%) 10,247 21,342 4 · 187 ≈ 102.874

Table 9: Synthesis of the optimal solution achieved with the SLP in Ex. 4.2 considering LA14 and LA16
simultaneously.

final costs for the optimized solutions are very similar, demonstrating the abundance of local minima in
proximity of the global optimum.

In the optimized solutions achieved by the SLP procedure, rather small constraint violations were
observed. This can be due to: the approximations introduced in the max functions; the linearizations
through which the problem is approximated; and some minor rounding applied on the optimized solutions.
The main advantage of the SLP with respect to the GA is the considerably smaller computational effort
required to achieve the optimized solution. In principle, the SLP requires two time history analyses for
each iteration (for a single ground motion), while the GA needed 500 time history analyses for each
generation (i.e. iteration) for all 20 different optimization processes performed.

The continuous approach suggested herein was also successful in adapting to higher costs of cer-
tain components. In Ex. 4.1 we performed an additional optimization while increasing the component
Cprototype from 10, 000 [kNs/m] to 50, 000 [kNs/m]. As expected, the SLP converged to an optimized
solution characterized by a preference of only one size-group of dampers instead of a combination of the
two size-groups available.

In Ex. 4.2 the optimized solution achieved with SLP did not fulfill the drift requirement for all the
records in the ensemble. Thus an additional optimization has been performed considering simultaneously
the records LA14 and LA16. This led to a different damper distribution and sizing for which the computed
drifts were smaller than the allowable limit for all the records of the ensemble.

5 Conclusions

In this paper we presented a novel, effective approach for achieving minimum-cost design of seismic
retrofitting using viscous fluid dampers. A new realistic cost function is defined, enabling the optimal
allocation and sizing of viscous dampers in frame structures for seismic applications. The new cost
function mimics the cost of seismic retrofitting, taking into account its three main components: The work
associated with the installation of a damper in a potential location of the frame and the architectural
impediment caused by its presence; The direct manufacturing cost of the dampers; And the cost of
prototype design and testing for each damper size. Constraints are imposed on peak inter-story drifts of
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each story of each peripheral frame separately. These are assessed based on a given ensemble of realistic
ground motions. The resulting optimization problem is highly nonconvex and nonlinear.

The optimization problem was first formulated in a mixed-integer framework, involving discrete and
continuous variables. The mixed-integer problem was then solved using a Genetic Algorithm. The prob-
lem was then re-formulated using only continuous variables and applying interpolation techniques in order
to attain discrete solutions. This problem was solved via a Sequential Linear Programming algorithm.
Finally, the optimized designs of two case studies attained using the two approaches were presented and
compared. The results revealed that the two algorithms converged to solutions with dampers at the same
locations and with very similar damper sizes. At the same time, the Sequential Linear Programming
algorithm converged to the optimized solution with a significantly smaller computational effort. This
demonstrates that the proposed formulation and the first-order gradient-based algorithm can provide a
very attractive framework for the practical design of seismic retrofitting using viscous dampers.
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