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Abstract Design of reinforced concrete structures is governed by the nonlinear behavior
of concrete and by its different strengths in tension and compression. The purpose of this
article is to present a computational procedure for optimal conceptual design of reinforced
concrete structures, based on topology optimization with elasto-plastic material modeling.
Concrete and steel are both considered as elasto-plastic materials, including the appro-
priate yield criteria and post-yielding response. The same approach can be applied also
for topology optimization of other material compositions where nonlinear response must
be considered. Optimized distribution of material is achieved by introducing interpola-
tion rules for both elastic and plastic material properties. Several numerical examples
illustrate the capability and potential of the proposed procedure.
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1 Introduction

Structural optimization techniques are now becoming an integral part of the design pro-
cess and are widely applied, for example, in the automotive and aerospace industries.
So far, optimal design had less impact on traditional structural engineering as practiced
in the construction industry. One reason might be the difficulty in combining numeri-
cal optimization tools with models that can accurately represent the complex behavior
of composite materials used by the building industry, such as reinforced concrete. The
aim of this article is to present a computational procedure that enables optimal design of
reinforced concrete structures. The approach can easily be generalized to accommodate
other combinations of materials besides steel and concrete. By combining topology opti-
mization with elasto-plastic modeling of the candidate materials, it is possible to consider
not only the different elastic stiffnesses of the candidate materials, but also their distinct
yield limits and yield criteria.

The main challenge in the design of structural elements made of reinforced concrete
(RC) lies in the different strengths of concrete in tension and compression. Typical con-
crete mixes have high resistance to compressive stresses but due to the quasi-brittle nature,
any appreciable tension (e.g. due to bending) will cause fracture and lead to failure of the
structural element. Numerical analysis of RC structures is typically based on the finite
element method. Since concrete itself is a composition of several materials, developing
appropriate computational models is challenging and both nonlinear stress-strain rela-
tionship, as well as deformation localization effects are important. In practice, traditional

1



plasticity formulations constitute reasonable approximations to the underlying fracturing
process. A key element in plasticity formulations is the yield or failure criteria. Several
yield criteria have been applied in computational models for concrete. Early studies sug-
gest using the Mohr-Coulomb or Drucker-Prager yield surfaces [9]. Aiming at formulating
computational approaches that can match available experimental results, more advanced
yield functions and plasticity formulations have been suggested over the years, for exam-
ple by Lubliner et al. [16], Feenstra and de Borst [12], Pravida and Wunderlich [22] and
Oliver et al. [21].

In practical design, RC members are treated as composite structures, where rein-
forcing steel bars are located in regions where tension (i.e. failure of plain concrete) is
expected. Traditional methods may be sufficient for effectively distributing steel bars
in standard structural elements such as beams, columns and slabs. However, nowadays
advanced concrete technology - resulting in new and improved material properties - as
well as new production methods, allow production of concrete structures of almost any
shape, giving new freedom to the structural designer [20, 27]. This opens much room for
applying structural optimization techniques, aimed at finding both the optimal shape of
the concrete element as well as the optimal placement of reinforcement.

Up to date, the vast majority of studies in structural topology optimization were
restricted to elastic material models (see Bendsøe and Sigmund [4] for a comprehensive
review of the field). Elastic modeling is sufficient for determining the distribution of
one or more material phases in a given domain, but only as long as all material points
remain in their elastic stress state. This is clearly not the case in reinforced concrete,
where the concrete phase fails under relatively low tension stresses. Therefore nonlinear
material modeling is necessary when aiming at optimal design of RC structures. Several
studies were dedicated to topology optimization of elasto-plastic structures, for example
based on the von Mises yield criterion [29, 18] or the Drucker-Prager yield criterion [29].
However, to the best of the authors’ knowledge, this is the first study where more than one
nonlinear candidate material is considered. Lately, multiphase material optimization was
utilized for improving the performance of fiber reinforced concrete [13]. Failure behavior
of all candidate materials was considered, but the approach taken is restricted to layered
structures and cannot provide general layouts as obtained using topology optimization.

One approach to visualizing the internal forces in cracked concrete beams is by a
simple truss model introduced by Ritter [23]. The resulting model, widely known as the
strut-and-tie model, has numerous applications in analysis and design of RC structures
subjected to shear forces or torsion moments (e.g. Schlaich et al. [24], Marti [17]). Several
researchers proposed to use a truss-like structure resulting from linear elastic topology
optimization in order to predict a strut-and-tie model (Bruggi [6], Liang et al. [15] and
Kwak and Noh [14]). Accordingly, the truss bars under tension forces represent the
location of steel reinforcement while the compressed bars represent concrete. In the
current study material nonlinearity of both concrete and steel is considered , and hence
a more realistic model is obtained. An interpolation scheme is proposed, such that by
changing the density (design variable of the optimization problem), the material properties
and the failure criteria vary between concrete and steel. The result of the optimization
process is the optimal distribution of concrete and steel inside a certain domain. Therefore
an efficient strut-and-tie model is directly obtained.

The article is organized as follows: topology optimization is shortly introduced in
Section 2, with emphasis on reinforcement design. The elasto-plastic models used for
concrete and steel and the nonlinear finite element analysis are discussed in Section 3.
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Section 4 is the heart of this article, where we present the material interpolation, the
optimization problem formulation and the sensitivity analysis. Several demonstrative
examples are presented in Section 5 and some conclusions are drawn in Section 6.

2 Design of linear elastic reinforcement using topol-

ogy optimization

In this section, we shortly review topology optimization procedures, with particular em-
phasis on optimal layouts consisting of two materials, see Bendsøe and Sigmund [4] for
an extensive report on topology optimization. We follow the material distribution ap-
proach for topological design [3] together with the SIMP (Solid Isotropic Material with
Penalization) interpolation scheme [2]. The optimization problem aimed at finding the
stiffest structural layout, usually known as the minimum compliance problem, is defined
as follows

min
ρ
c(ρ) = fTu

s.t.:
Ne∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1 e = 1, ..., Ne

with: K(ρ)u = f (1)

where f is the external load vector, u is the displacements vector, ve is the element volume,
ρe is the element density, V is the total available volume and K(ρ) is the stiffness matrix
corresponding to the element densities ρ

K(ρ) =
Ne∑
e=1

(Emin + (Emax − Emin)ρpEe )Ke

In general, Emin and Emax are the values of Young’s modulus corresponding to two candi-
date materials which should be distributed in the design domain. For the case of distribut-
ing a single material and void, Emin is set to a small positive value and Emax is typically
set to 1. Ke represents the element stiffness matrix corresponding to the Young’s modulus
value of 1 and pE is a penalization factor required to drive the design towards a 0-1 (or
black and white) layout. For the purpose of clarity, filtering is not considered in the above
formulation. Nevertheless, in many cases it is necessary to apply a filter in order to avoid
checkerboard patterns and to obtain mesh-independent results [4].

In Figure 1, an optimized design obtained for a single linear elastic material (Emin
represents void) is presented. The design domain is a rectangular simply supported beam;
25% of the total volume is available; and the load consists of a single point load. The
obtained layout is a typical result of single-material topology optimization: the layouts
usually resemble a truss/frame structure formed of several triangles. When Emin and
Emax represent two materials (Emin is one order smaller than Emax), a different layout is
obtained, see Figure 2. Such designs are typical for sandwich structures, consisting of a
soft core and stiff sheets.

The optimized topologies obtained with linear elastic material modeling cannot be
used directly in some design problems involving the composition of two materials. A
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Figure 1: Optimized layout of a simply supported beam. Black:
material, white: void.

Figure 2: Optimized layout of a simply supported beam. Black:
stiff material, white: soft material.

fundamental example is the design of reinforced concrete, where the design philosophy
is based mainly on the fact that plain concrete has higher strength in compression than
in tension, a property that is not captured by linear elastic modeling. In traditional
reinforced concrete design, steel bars are positioned where tension stresses are expected.
Therefore nonlinear material modeling is an essential component in optimal design of
reinforced concrete and other compositions of materials with different nonlinear properties,
taking into account not only the elastic stiffnesses of the two materials but also their yield
limits and post-yielding behavior.

3 Nonlinear material model and finite element anal-

ysis

In this section, we shortly review the elasto-plastic model utilized in our study and outline
the resulting nonlinear finite element problem to be solved. Later, in Section 4, the
connection between the topology optimization problem and the nonlinear material model
will be made.

3.1 Elasto-plastic material model

The main purpose of this study is to optimize the distribution of two materials in a given
domain, taking the different nonlinear behavior of both materials into account. The main
idea is to represent the elasto-plastic response of both materials using one generic yield
function that varies according to the value of the design variable. For this purpose, we
utilize the Drucker-Prager yield criterion [11]. For certain choices of material properties,
the Drucker-Prager yield function can model the behavior of materials that are much
stronger in compression than in tension, such as soils, rock or plain concrete. Moreover,
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the von Mises yield criterion which is widely used for metals (having equal strength in
tension and compression) can be seen as a particular case of the Drucker-Prager criterion.

(a) von Mises (b) Drucker-Prager

Figure 3: Yield surfaces in 2D principal stress space.

As a demonstrative case we focus throughout this article on the distribution of concrete
and steel. In essence, the purpose of utilizing nonlinear modeling is to identify the failure
of concrete when tension stresses appear and then redistribute material so that such failure
does not occur. Other aspects of the elasto-plastic behavior, namely yielding of steel in
both stress states or yielding of concrete in compression, are categorized as less important
for the purpose of this study. Therefore some simplifying assumptions are made in the
formulation of the nonlinear material model, which would not be allowed if the purpose
was accurate prediction of failure and damage in reinforced concrete structures.

In the following, we present the governing equations of the elasto-plastic model, leading
to the local constitutive problem to be solved on a Gauss-point level. We follow classical
rate-independent plasticity formulations, based on the textbooks by Simo and Hughes
[26] and Zienkiewicz and Taylor [30]. The Drucker-Prager yield function can be expressed
as

f(σ, κ) =
√

3J2 + α(κ)I1 − σy(κ) ≤ 0

where J2 is the second invariant of the deviatoric stress tensor and I1 is the first invariant
(trace) of the stress tensor. α is a material property and σy is the yield stress in uniaxial
tension, both functions of the internal hardening parameter κ according to some hardening
functions. The expression

√
3J2 is usually known as the von Mises stress or equivalent

stress. When α = 0, we obtain the von Mises yield criterion. We assume simple isotropic
hardening rules

α(κ) = constant (2)

σy(κ) = σ0
y +HEκ (3)

where σ0
y is the initial uniaxial yield stress, E is Young’s modulus and H is a constant,

typically in the order of 10−2. The assumptions (2) and (3) are not necessarily suitable for
accurate modeling of concrete but do not affect the ability to capture the most important
failure in concrete, that is failure in tension. We assume an associative flow rule and a
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simple relation between the hardening parameter and the rate of the plastic flow

ε̇pl = λ̇
∂f

∂σ

κ̇ = λ̇ (4)

where εpl is the plastic strain tensor and the scalar λ is usually referred to as the plas-
tic multiplier. The relation (4) does not accurately represent hardening mechanisms in
metals. Nevertheless, it is accurate enough for the purpose of the current study, since
post-yielding response of the steel phase should not have an effect on the optimal choice
of material. Together with the yield criterion, λ̇ must satisfy the Kuhn-Tucker comple-
mentarity conditions

λ̇ ≥ 0

f(σ, κ) ≤ 0

λ̇f(σ, κ) = 0

The continuum problem (in the temporal sense) is transformed into a discrete con-
strained optimization problem by applying an implicit backward-Euler difference scheme.
The central feature of this scheme is the introduction of a trial elastic state. For any given
incremental displacement field, it is first assumed that there is no plastic flow between
time tn and the next time step tn+1, meaning the incremental elastic strains are the in-
cremental total strains. It can be shown that the the loading/unloading situation which
is governed by the Kuhn-Tucker conditions can be identified using the trial elastic state
[26]. Once a plastic increment occurs, the new state variables can be found by solving a
nonlinear equation system resulting from the time discretization of the governing equa-
tions. For the current model, the derivation of the discrete equation system is as follows.
The total strain is split into its elastic and plastic parts

ε = εel + εpl

The stress rate is related to the elastic strain rate via the elastic constitutive tensor D

σ̇ = Dε̇el

So for a certain “time” increment we can write the linearized equation

∆σ = D(∆ε−∆εpl) = D(∆ε−∆λ
∂f

∂σ
)

Multiplying by D−1 leads to the first set of equations to be solved

∆ε−D−1∆σ − ∂f

∂σ
∆λ = 0 (5)

An additional equation results from the requirement that after initial yielding, the stress
state should satisfy the yield condition

f(σ, λ) =
√

3J2 + αI1 − σy(λ) = 0 (6)
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3.2 Nonlinear finite element analysis

Throughout this study, we follow the framework described by Michaleris et al. [19] for
nonlinear finite element analysis and adjoint sensitivity analysis, where the elasto-plastic
nonlinear analysis is seen as a transient, nonlinear coupled problem. In the coupled
approach, for every increment n in the transient analysis, we determine the unknowns un
(displacements) and vn (stresses and plastic multipliers) that satisfy the residual equations

Rn(un,un−1,vn,vn−1) = 0 (7)

Hn(un,un−1,vn,vn−1) = 0

where Rn = 0 is satisfied at the global level and Hn = 0 is satisfied at each Gauss point.
The transient, coupled and nonlinear system of equations is uncoupled by treating the
response v as a function of the response u. When solving the residual equations for the n-
th “time” increment, the responses un−1 and vn−1 are known from the previous converged
increment. The independent response un is found by an iterative prediction-correction
procedure in the global level, while for each iterative step the dependent response vn(un)
is found by an inner iterative loop. The responses un and its dependant vn are corrected
until Eq. (7) is satisfied to sufficient accuracy. This procedure is repeated for all N
increments.

Neglecting body forces, Rn is defined as the difference between external and internal
forces and depends explicitly only on vn

Rn(vn) = fn −
∫
V

BTσndV

where B is the standard strain-displacement matrix in the context of finite element pro-
cedures. The internal, Gauss-point level variables vn are defined as

vn =

[
σn

λn

]
where σn are the stresses and λn is the plastic multiplier. Furthermore, the residual Hn

is defined as the collection of two incremental residuals, resulting from Eqs. (5),(6)

Hn(un,un−1,vn,vn−1) =

[
Bun −Bun−1 −D−1(σn − σn−1)− ∂f

∂σn
(λn − λn−1)√

3J2 + αI1 − σy(λn)

]
= 0

(8)
Here, the first equation equates total, elastic and plastic strains and the second represents
the requirement that during plastic response the stress state satisfies the yield condition.
In case an elastic step is predicted by the trial state, then no plastic flow occurs and
λn = λn−1. Therefore the first equation is satisfied trivially by the elastic stress-strain
relationship and the second equation can be disregarded.

The elasto-plastic problem is path-dependent by nature, meaning that the evolution
of plastic strains under a certain load intensity depends on the history of plastic straining
and cannot be computed correctly in one load stage. In practice, this means that the FE
analysis must be solved incrementally. The default choice for most nonlinear FE solvers
is to use load control, meaning that the total load is divided into a certain number of
increments. Then for each increment, the current stress and strain states are required for
the solution of the local elasto-plastic problem corresponding to the next load step. In
some cases it is beneficial to switch to displacement control, for example when a small
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addition to the load causes a large additional displacement or when limit points are
encountered [10]. In the context of optimal design, a fixed load intensity throughout the
optimization process may cause difficulties in solving the nonlinear analysis equations for
intermediate designs that are very flexible. From this point of view, using displacement
control for the nonlinear analysis is preferable. This means that the displacement at a
selected degree of freedom is prescribed to a certain value for all design cycles. Choosing
an appropriate value is possible if the designer has some knowledge regarding the expected
deformation, and can also be seen as a way of imposing a required deflection at a certain
point. Displacement control was utilized also in previous studies regarding topology
optimization of elasto-plastic structures, e.g. by Swan and Kosaka [29] and Maute et al.
[18].

For these reasons we mainly use displacement control and corresponding objective
functions in this study. Then the global residual equation (7) takes the form

Rn(vn, θn) = θnf̂ −
∫
V

BTσndV

where θn is the (unknown) load factor in the n-th increment and f̂ is a constant reference
load vector with non-zero entries only at loaded degrees of freedom. When solving the
coupled equation system for each increment, a single displacement has a prescribed value
and the rest, as well as the corresponding load factor θn, are determined from equilibrium.

4 Problem formulation

4.1 Interpolation of material properties

The main idea is to interpolate the nonlinear behavior of the two candidate materials using
the density variables from the topology optimization problem. The interpolation of the
elastic modulus is identical to that used in standard, linear elastic topology optimization

E(ρe) = Emin + (Emax − Emin)ρpEe (9)

where ρe is the density design variable corresponding to a certain finite element e. In-
terpolation of the nonlinear response is achieved by adding a dependency on the design
variable ρ to the yield function, so instead of Eq. (6) we have

f(σ, λ, ρe) =
√

3J2 + α(ρe)I1 − σy(λ, ρe) = 0 (10)

Following a SIMP-type approach, the interpolating functions α(ρe) and σy(ρe) are given
by

α(ρe) = αmax − (αmax − αmin)ρpαe (11)

σy(λ, ρe) = σ0
y,min + (σ0

y,max − σ0
y,min)ρ

pσy
e +HE(ρe)λ (12)

where pα and pσy are penalization factors for α and σy, respectively. These interpolations
imply that the yield surface of one material is obtained by choosing ρe = 0, meaning
α = αmax and σ0

y = σ0
y,min, and the second yield surface is obtained by ρe = 1, meaning

α = αmin and σ0
y = σ0

y,max. As stated above, the particular case αmin = 0 means that the
plastic response of the second material is governed by the von Mises yield criterion. By
setting also σ0

y,max = σ0
y,steel an actual model of steel is obtained for ρe = 1. In Figure 4,
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Figure 4: Demonstrative example of the interpolation between
two yield surfaces, presented in 2D principal stress space. The
“Hybrid” surface represents the behavior of an artificial mixture,
corresponding to an intermediate density in topology optimiza-
tion.

the interpolation of the yield surfaces is demonstrated, for two materials resembling steel
and concrete.

In order to obtain optimized designs with general concrete topologies, we extend this
interpolation so it accommodates also void regions. Following [25], we add another design
variable x for each finite element. Void regions are represented by x = 0 and solid
regions are represented by x = 1. Within the solid regions, the value of ρ determines
the distribution of the two candidate materials. This leads to the following interpolation
functions, replacing Eqs. (9), (10), (11), (12)

E(xe, ρe) = xpExe (Emin + (Emax − Emin)ρpEe ) (13)

f(σ, λ, ρe, xe) =
√

3J2 + α(xe, ρe)I1 − σy(λ, xe, ρe) = 0 (14)

α(xe, ρe) = xpαxe (αmax − (αmax − αmin)ρpαe ) (15)

σy(λ, xe, ρe) = xpσxe (σ0
y,min + (σ0

y,max − σ0
y,min)ρ

pσy
e +HE(xe, ρe)λ) (16)

where pEx, pαx and pσx are penalization factors for x. In practice, one may choose to use
the same penalty factors for both design variables, x and ρ.

4.2 Optimization problem and sensitivity analysis

In this article, we focus mainly on one demonstrative class of objective functions. The
aim is to find the stiffest structural layouts given certain amounts of available material.
When only linear elastic response is considered, the corresponding objective is the widely
used minimum compliance problem, presented above (1). When nonlinear response is
taken into account, one may define several different objectives that are related to the
maximization of the structural stiffness (see for example [29], [18], [8]). Since displacement
control is preferred in the nonlinear FE analysis, a possible equivalent to minimizing
compliance in linear elasticity is maximizing the end compliance for a given prescribed
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displacement. In other words, the objective is to maximize the magnitude of the load
that corresponds to a certain prescribed displacement at a particular degree of freedom.

Assuming the analysis problem is solved in N increments, the optimization problem
of distributing two materials in the design domain can be stated as follows

min
ρ
c(ρ) = −θN f̂TuN

s.t.:
Ne∑
e=1

veρe ≤ V

0 ≤ ρe ≤ 1, e = 1, ..., Ne

with the coupled residuals: Rn(vn, θn) = 0 n = 1, ..., N

Hn(un,un−1,vn,vn−1,ρ) = 0 n = 1, ..., N (17)

where V is the available volume of the material whose properties correspond to ρe = 1.
When distributing two materials and void, the optimization problem is slightly modified

min
ρ,x

c(ρ,x) = −θN f̂TuN

s.t.:
Ne∑
e=1

vexe ≤ V1

Ne∑
e=1

veρe ≤ V2

0 < xmin ≤ xe ≤ 1, e = 1, ..., Ne

0 ≤ ρe ≤ 1, e = 1, ..., Ne

with the coupled residuals: Rn(vn, θn) = 0 n = 1, ..., N

Hn(un,un−1,vn,vn−1,ρ,x) = 0 n = 1, ..., N (18)

where V1 is the total available volume of material, V2 is the available volume of the material
whose properties correspond to ρe = 1 (V2 ≤ V1) and xmin is a positive lower bound used
in order to avoid singularity of the stiffness matrix.

As mentioned earlier, the design sensitivities are computed by the adjoint method, fol-
lowing the framework for transient, nonlinear coupled problems described by Michaleris
et al. [19]. To the best of the authors’ knowledge, this is the first implementation of this
framework in topology optimization of structures with material nonlinearities. Further-
more, it is presumably the first sensitivity analysis for topology optimization of structures
with material nonlinearities where no simplifying assumptions are made. An effort is made
to use similar notation to that in [19]. The procedure for sensitivity analysis is described
here only for the two material and void problem (18) since the two-material problem can
easily be deduced from it. We begin by forming the augmented objective function ĉ(ρ)

ĉ(ρ,x) = −θN f̂TuN −
N∑
n=1

λTnRn(vn, θn)

−
N∑
n=1

γTnHn(un,un−1,vn,vn−1,ρ,x)

where λn and γn are the adjoint vectors to be found for all increments n = 1, ..., N . We
assume the initial responses u0, v0 do not depend on the design variables. Furthermore,

10



it can be observed that the objective function and the nonlinear equation systems Rn = 0
(n = 1, ..., N) do not depend explicitly on the design variables. Therefore the explicit
terms in the derivative of the augmented objective with respect to the design variables
are

∂ĉexp
∂xe

= −
N∑
n=1

γTn
∂Hn

∂xe

∂ĉexp
∂ρe

= −
N∑
n=1

γTn
∂Hn

∂ρe

The adjoint vectors γn (n = 1, ..., N) are computed on a Gauss-point level by a backward
incremental procedure, which is required due to path dependency of the elasto-plastic
response. The backward procedure consists of the collection of equation systems resulting
from the requirement that all implicit derivatives of the design variables will vanish.
Further details regarding the adjoint procedure can be found in [1]. For performing the
backwards-incremental sensitivity analysis, the derivatives of the global and local residuals
with respect to the analysis variables are required. These are given in this section for the
elasto-plastic model utilized in the current study. In particular, we consider a plane stress
situation, meaning the stresses and strains are collected in a vector with three entries:
σ = [σ11, σ22, σ12]

T and ε = [ε11, ε22, ε12]
T .

The derivative of the global residual is independent of the specific material model
employed and is given by

∂(Rn)

∂(vn)
=
[
−BTwJ(8×3) 0(8×1)

]
where B is the standard strain-displacement matrix; w is the Gauss-point weight for
numerical integration; and J is the determinant of the Jacobian at the Gauss-point. For
the nonlinear material model described in Section 3, the derivatives of the local residual
are

∂(Hn)

∂(un)
=

[
B(3×8)

0(1×8)

]
∂(Hn+1)

∂(un)
=

[
−B(3×8)

0(1×8)

]
∂(Hn)

∂(vn)
=

[
−D−1 −∆nλ ∂2f

∂σn (3×3)
− ∂f
∂σn

T

(3×1)
∂f
∂σn (1×3)

−HE(1×1)

]
∂(Hn+1)

∂(vn)
=

[
D−1

(3×3)
∂f

∂σn+1

T

(3×1)

0(1×3) 0(1×1)

]

where the derivative of the yield function with respect to the stress components is

∂f

∂σ
=

1

2
√

3J2

[
2σ11 − σ22 2σ22 − σ11 6σ12

]
+ α

[
1 1 0

]
In actual implementation, the derivatives of the local residuals Hn and Hn+1 should
maintain consistency with respect to the analysis. This means that some rows and columns
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should be disregarded in case of elastic loading or unloading. For example, if increment

n is elastic, then we have ∂(Hn)
∂(un)

=
[
B(3×8)

]
and ∂(Hn)

∂(vn)
=
[
−D−1

(3×3)

]
.

Finally, computing the derivatives ∂Hn

∂xe
, ∂Hn

∂ρe
requires adding the dependency on the

design variables to Eq. (8) and differentiating with respect to xe and ρe. This leads to

∂Hn

∂xe
=

[
−∂(D(xe,ρe)−1)

∂xe
(σn − σn−1)−

∂( ∂f
∂σn

(xe,ρe))T

∂xe
(λn − λn−1)

∂f(xe,ρe)
∂xe

]
∂Hn

∂ρe
=

[
−∂(D(xe,ρe)−1)

∂ρe
(σn − σn−1)−

∂( ∂f
∂σn

(xe,ρe))T

∂ρe
(λn − λn−1)

∂f(xe,ρe)
∂ρe

]

where

∂(D(xe, ρe)
−1)

∂xe
= − 1

E(xe, ρe)

∂E(xe, ρe)

∂xe
D(xe, ρe)

−1

∂(D(xe, ρe)
−1)

∂ρe
= − 1

E(xe, ρe)

∂E(xe, ρe)

∂ρe
D(xe, ρe)

−1

∂( ∂f
∂σn

(xe, ρe))
T

∂xe
=

∂α(xe, ρe)

∂xe

 1
1
0


∂( ∂f

∂σn
(xe, ρe))

T

∂ρe
=

∂α(xe, ρe)

∂ρe

 1
1
0


∂f(xe, ρe)

∂xe
=

∂α(xe, ρe)

∂xe
I1 −

∂σy(xe, ρe)

∂xe
∂f(xe, ρe)

∂ρe
=

∂α(xe, ρe)

∂ρe
I1 −

∂σy(xe, ρe)

∂ρe

The above derivatives can be easily computed using the relations given in Eqs. (13), (14),
(15), (16).

Remarks regarding sensitivity analysis for displacement-controlled analysis
The objective function used in the problem formulations above is appropriate for stiffness
maximization only in the case of a single point load. Applying a distributed load while
prescribing a single displacement poses a problem when defining a proper objective for
stiffness maximization. As discussed in [1], maximizing the global end-compliance θf̂Textu
may result in a structure that is very stiff with respect to bearing the load at the prescribed
DOF but very flexible with respect to all other loads. Therefore when a distributed load is
applied, the objective is defined as minimizing the end-compliance fext

Tu as if the analysis
is load-controlled and as if the load intensity is constant throughout the optimization. The
resulting hybrid procedure combines the advantages of both load and displacement control.
On the one hand, the analysis is more stable numerically and is more likely to converge
when the structural layout is relatively “soft”. On the other hand, the objective is well-
defined and should lead to the best global stiffness with respect to all the applied loads.
In practice, this can be seen as a load-controlled procedure, just that the load intensity
varies throughout the design process to fit the prescribed displacement. Moreover, in the
sensitivity analysis it is assumed that the solution was obtained using load control, which
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leads to a more straightforward computational procedure. This procedure is demonstrated
on a compliance objective in a single degree of freedom space in Figure 5. For comparison,
the standard procedures for either load or displacement control are also sketched. It can
be seen that the hybrid approach is equivalent to a load-controlled approach where the
load intensity varies throughout the optimization process. In particular, the varying load
level is determined implicitly by the displacement-controlled analysis.

5 Examples

In this section we present several results obtained when implementing the computational
approach described in this article. The purpose is to demonstrate the capabilities and po-
tential of our approach and to gain insight regarding implementation aspects. Therefore,
as preliminary examples we consider relatively small scale two-dimensional problems with
no self weight. Extending to three dimensional models and incorporating more realistic
loading conditions are among the goals of future work.

5.1 General considerations

The examples presented refer to both the distribution of concrete and steel (17) as well
as to the distribution of concrete, steel and void (18). The material parameters resemble
actual values corresponding to steel and concrete, see Table 1. For computing αmax and
σ0
y,min, both corresponding to the concrete phase, it was assumed that the strength of

concrete in compression is ten times higher than in tension. All test cases were solved
using a 2D finite element mesh consisting of square, bi-linear plane stress elements. The
optimization was performed by a nonlinear optimization program based on the Method
of Moving Asymptotes - MMA [28]. In order to obtain regularized designs and to avoid
checkerboard patterns, a density filter was applied [5, 7].

Table 1: Material properties in all test cases

Parameter Material Value
Emin concrete 25.0 [GPa]
Emax steel 200.0 [GPa]
αmin steel 0.0
αmax concrete 0.818
σ0
y,min concrete 5.5 [MPa]
σ0
y,max steel 300 [MPa]
ν both 0.3
H both 0.01

The actual computational performance of the proposed approach is affected by the
choice of several numerical parameters. First, one should carefully choose an appropri-
ate value of the prescribed displacement, denoted by δ. From the computational point
of view, an appropriate value of δ is necessary in order to ensure convergence of the
Newton-Raphson iterations in the nonlinear FE analysis. Too large values of δ may cause
difficulties in convergence, thus increasing the computing time. At the same time, δ should
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Figure 5: Comparison of approaches for optimal design consider-
ing structural nonlinearities. In a load-controlled setting (top), the
designs are evaluated at the same load level and updated accord-
ingly. In a displacement-controlled setting (middle), the designs
are evaluated at the same displacement level and updated accord-
ingly. In the hybrid approach (bottom), each design is evaluated
at the prescribed displacement level, but then updated according
to the corresponding load level.
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be large enough to ensure that the response of the structure is indeed nonlinear. From a
practical point of view, δ should also fit realistic deflections of reinforced concrete struc-
tures. In the current implementation, in case the nonlinear analysis fails to converge at
a certain displacement level even after several increment cuts, the analysis is terminated
and sensitivity analysis is performed with respect to the converged configuration.

As for the optimization process, it is well known that in topology optimization the
computational performance is strongly affected by the choice of the filter radius and
penalty factors. An effort was made to keep these values similar for all test cases. In
some cases, the penalty factors are gradually increased and/or the filter radius is gradually
decreased in order to obtain a more refined layout. The particular choice of numerical
parameters for each test case is given in the corresponding text. The number of design
iterations varies between test cases. According to the authors’ experience, most problems
require 100 to 200 design iterations to reach a distinct layout. After that, no significant
changes in the layout can be observed and the improvement in objective value is negligible.
The relatively tight convergence tolerance (1× 10−4) referring to the maximum change in
an element density throughout the design domain was not reached.

5.2 Optimized concrete-steel layouts

Example 1. Simply supported beam subject to a concentrated load In this ex-
ample problem, the competence of the proposed procedure in designing the reinforcement
for a simply supported beam is demonstrated. We consider a beam with a length-to-
height ratio equal to 4, loaded with a prescribed displacement directed downwards at the
middle of the top edge, see Figure 6. The model of the symmetric half is discretized with
a 200× 100 FE mesh. We first discuss the maximization of the end-compliance, see (17).
We examine three volume fractions for the steel constituent: 0.05, 0.1 and 0.2 and the
magnitude of the prescribed displacement δ is set to 0.001, 0.002 and 0.005 respectively.
In some cases, the final design is achieved by gradually increasing all penalty factors and
reducing the filter radius, for details see Table 2. This is necessary in order to remove
“gray” regions of intermediate density, as well as small isolated reinforcement regions.

?
δ{

f

?
4

1

Figure 6: Maximum end-compliance of a simply supported beam:
design domain, boundary conditions and prescribed displacement.

The layouts obtained for the simply supported beam resemble actual design of rein-
forced concrete beams, see Figure 7. Away from the supports, bending action is dominant
so steel is necessary in the bottom fibers where tension stresses appear. Closer to the
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Table 2: Gradual refinement, example 1

Design Penalty Filter
iterations factor radius

V = 0.1, stage 1 200 3.0 0.015
V = 0.1, stage 2 100 4.0 0.010
V = 0.2, stage 1 100 3.0 0.015
V = 0.2, stage 2 50 4.0 0.010

supports, shear forces are dominant so concrete typically cracks in an angle of 45◦, corre-
sponding to the direction of the principal stresses in pure shear. Consequently, the steel
reinforcement should be bent in order to accommodate the tensile stresses due to shear.
Additional reinforcement is placed at the upper fibers and at the supports. This is nec-
essary since the load and the reaction forces are concentrated at single nodes. Moreover,
the relatively high available volume of steel facilitates the use of steel also in compression,
both in the top fibers and in the shear-dominated regions. The reinforcement at the upper
fiber can also be interpreted as a means of constraining the curvature due to bending.
Therefore steel is preferred there due to its higher Young’s modulus so the resulting struc-
ture is much stiffer. Comparing the layouts obtained with different volume fractions, it
can be seen that the highest priority is given to reinforcement in the bottom fibers that
increases the resistance to bending, as well as to reinforcement that essentially stiffens
particular regions that bear concentrated forces. When more steel is available, then rein-
forcement is added to shear-dominated regions as well as to the upper fibers. Concluding
this example, the benefit of employing nonlinear modeling is clear when comparing the
results to the layout obtained with linear modeling, see Figure 2.

In order to gain more qualitative insight regarding the optimal distribution of reinforce-
ment, we examine an alternative objective function that combines stiffness maximization
with minimization of the volume of steel. The volume constraint in (17) is removed and
the objective is changed to

c = −
(
βθN f̂TuN

)
×

(
1−

∑Ne
e=1 veρe∑Ne
e=1 ve

)q

(19)

where β is a scaling factor (1× 106 in this case) and the power q varies according to the
weight we wish to put on minimizing the volume of steel. Even though the optimized
quantity has no physical meaning, examining the optimized designs obtained with this
objective can improve our understanding of the priorities in distribution of steel. As
we increase the value of q, it is expected that the optimized structure will be less stiff
because the utilized amount of steel will decrease. Consequently, reinforcement will be
placed only in the regions where it is most necessary. The resulting layouts obtained with
this objective are presented in Figure 8 and essentially demonstrate the same priorities
as concluded from the designs generated for stiffness maximization with various volume
fractions.

Example 2. Beams subject to distributed loads In these example problems, we
again address the maximum end-compliance design of beams. We consider more slender
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(a) Optimized layout with V = 0.05 and δ = 0.001. 200 design iterations with pE =
3, pα = 3, pσy = 3 and filter radius r = 0.015.

(b) Optimized layout with V = 0.1 and δ = 0.002. 300 design iterations with gradual
refinement.

(c) Optimized layout with V = 0.2 and δ = 0.005. 150 design iterations with gradual
refinement.

Figure 7: Maximum end-compliance of a simply supported beam
subject to a concentrated load. Black = steel, white = concrete.
Layouts obtained for various volume constraints, penalizations
and filter radii.
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(a) Optimized layout with q = 1, 200 design iterations with pE = 3, pα = 3, pσy
= 3 and

filter radius r = 0.015.

(b) Optimized layout with q = 2, 200 design iterations with pE = 3, pα = 3, pσy
= 3 and

filter radius r = 0.015.

(c) Optimized layout with q = 3, 200 design iterations with pE = 3, pα = 3, pσy = 3 and
filter radius r = 0.015.

Figure 8: Optimized layouts of a simply supported beam subject
to a concentrated load, for the mixed objective (19) with various
q values and δ = 0.002. Black = steel, white = concrete.
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beams with loads evenly distributed along the length, see Figure 9(a) for the setup of a
simply supported beam and Figure 10(a) for the setup of a cantilevered beam. Due to
the larger length-to-height ratio, we expect bending action to be much more dominant
than in the previous example. The models of the symmetric halves are discretized with
160× 40 and 240× 40 FE meshes respectively; the volume fraction is set to 0.1 for both
cases; and the load is modeled as 10 equally spaced point loads on one half of the beam.
For the simply supported beam, we apply a prescribed displacement directed downwards
at the mid point of the top fiber, with a magnitude of δ = 0.005. For the cantilevered
beam, the prescribed displacement is at the top of the free edge and the magnitude is
δ = 0.001. As in the previous example, gradual changes in penalization and filtering are
necessary for obtaining the final design, see Table 3 for details.

Table 3: Gradual refinement, example 2

Design Penalty Filter
iterations factor radius

Simply supported beam, stage 1 100 3.0 0.040
Simply supported beam, stage 2 50 4.0 0.025
Cantilevered beam, stage 1 200 3.0 0.040
Cantilevered beam, stage 2 100 4.0 0.025

Examining the layouts obtained with distributed loads, it can be seen that the pre-
sented procedure enables a clear distinction between tensile and compressive stresses. In
the simply supported beam, steel reinforcement is placed in the bottom fiber where tensile
stresses appear due to bending, and in the vicinity of concentrated forces (at the supports
in this case). Near the supports, the bottom fiber reinforcement is bent upwards. This
improves the structure’s resistance to shear failure, which is dominant in these regions.
In the cantilevered beam, the same principals are followed, so steel is added also to the
top fiber above the supports. This reinforcement is bent in both directions according to
the varying dominance of shear failure in comparison to bending failure. Finally, it can
be observed that small portions of steel are used also to reinforce the support regions and
to a lesser extent under loading points.

The case of the simply supported beam was also examined with the mixed objective
function (19) and no volume constraint. The resulting layouts are presented in Figure 11.
For a relatively low q = 2, optimization leads to a very stiff sandwich structure, with the
exception that the bottom reinforcement is bent to prevent shear failure. The ability to
capture various failure modes demonstrates the strength of the current approach compared
to linear elastic modeling. When raising the value of q, the top fiber reinforcement is
completely eliminated since it is not essential for the prevention of failure. The designs
obtained with q = 3 and q = 4 are in principal the same as the one generated when
constraining the steel volume fraction to be smaller than or equal to 0.1. We again
observe bottom-fiber reinforcement that prevents bending failure, which is bent towards
the supports to resist shear failure. As in other test cases, some steel is also used as
reinforcement in the vicinity of concentrated supports.

Example 3. Short cantilever In this example problem, the proposed procedure is
applied for designing the reinforcement in a short cantilever. The design domain is a square
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(a) Design domain and boundary conditions.

(b) Optimized layout after 150 design iterations with gradual refinement.

Figure 9: Maximum end-compliance of a simply supported beam
subject to a distributed load. Black = steel, white = concrete.
Steel consists of 10% of the total volume.
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(a) Design domain and boundary conditions.

(b) Optimized layout after 300 design iterations with gradual refinement.

Figure 10: Maximum end-compliance of a cantilevered beam sub-
ject to a distributed load. Black = steel, white = concrete. Steel
consists of 10% of the total volume.
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(a) Optimized layout with q = 2, 150 design iterations with gradual refinement.

(b) Optimized layout with q = 3, 150 design iterations with gradual refinement.

(c) Optimized layout with q = 4, 150 design iterations with gradual refinement.

Figure 11: Optimized layouts of a simply supported beam subject
to a distributed load, for the mixed objective (19) with various q
values and δ = 0.005. Black = steel, white = concrete.

supported at two corners on one side and loaded with a prescribed displacement directed
downwards at the opposite bottom corner, see Figure 12(a). The model is discretized
with a 100 × 100 FE mesh. The objective is to maximize the end-compliance, and we
present two results: one of concrete-steel distribution (see (17)) and another of concrete-
steel-void distribution (see (18)). For the two-material design, the steel volume fraction
is 0.2. When void is considered as well, then the total volume fraction is 0.4 and the
steel volume fraction is 0.1. The prescribed displacements are set to δ = 0.002 and
δ = 0.001 respectively. The penalty factors are set to the value of 3.0 and the filter radius
is r = 0.015 for all design iterations.

In both cases, steel is used mainly for a cable-like member in tension, transferring the
load to the upper support. This cable is then supported by either a continuous concrete
domain (when no voids are possible) or by two compressed concrete bars, see Figures
12(b), 12(c). This again demonstrates the capability of the procedure to distinguish be-
tween structural elements in tension and in compression and to choose the appropriate
material for each type. The layout obtained when distributing steel, concrete and void
resembles strut-and-tie models that are widely used in practical analysis and design of
reinforced concrete. As observed in previous examples, steel might be used also for stiff-
ening support regions. In the short cantilever, this is the case mainly for the two material
problem with no voids. To a lesser extent, this is observed also in the result of the
concrete-steel-void distribution.

Remarks regarding the concrete behavior We note that the presented approach is
based on continuum modeling and therefore the structural response mostly resembles a
composite continuum. The general tendency is that steel is positioned in regions of major
tensile strain, while concrete acts mainly in compression and in mixed stress states. In all
the examples presented, the optimized response is in principal very close to linear, with
the exception of transition regions where concrete acts together with steel and undergoes

21



?

δ{

f

1

1

(a) Design domain, boundary conditions and pre-
scribed displacement.

(b) Optimized layout after 500 design iter-
ations, 80% concrete, 20% steel. Black =
steel, gray = concrete.

(c) Optimized layout after 200 design iter-
ations, 30% concrete, 10% steel, 60% void.
Black = steel, gray = concrete, white =
void.

Figure 12: Maximum end-compliance of a short cantilever
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tension. Examples are near the ends of the steel bars in the beam problems or in the
vicinity of the steel cable in the short cantilever.

Compared to strut-and-tie modeling, this approach offers an alternative means of de-
termining the distribution of tensile reinforcement. Concrete is modeled as elasto-plastic,
thus cracking is not considered so the structure remains intact (but with zero stiffness)
also after yielding. Nevertheless, when both concrete and steel phases are optimized,
the result resembles a strut-and-tie model. This is related to the general tendency in
continuum-based topology optimization: material is iteratively added in regions of high
principal stresses; ultimately, a truss/frame layout is obtained that is aligned with the
principal directions. The same happens in the present formulation that leads to a layout
consisting of steel bars in tension and concrete bars in compression, which is in principal
the same as one would obtain by a strut-and-tie approach.

6 Discussion

Optimized conceptual design of reinforced concrete was demonstrated, based on a new
approach to topology optimization with nonlinear material modeling. The different failure
criteria corresponding to the nonlinear response of concrete and steel were taken into
account, using material interpolation rules for post-yielding behavior in addition to the
standard interpolation of elastic properties. Even though the approach was applied only
to the design of steel-reinforced concrete, it can be easily applied to other compositions
of materials where it is necessary to capture the nonlinear behavior for the purpose of
optimizing the design.

The resulting optimized layouts clearly demonstrate the potential of this approach.
When distributing steel within a concrete beam, the placement of reinforcement resembles
traditional design and agrees with common engineering knowledge. When distributing
concrete, steel and void, the optimized design resembles a strut-and-tie model. The can
be used for several purposes: first, to provide the engineer an improved initial design
before the detailed design stage; second, to challenge traditional practice and achieve
more efficient design of reinforced concrete structures by suggesting non-traditional forms
and shapes; third, to reduce weight and concrete production, by utilizing lightweight
concrete in the “void” regions where no strength is required.

Future work will focus on more realistic modeling. With respect to loading conditions,
it is necessary to consider also self-weight and multiple load cases. Another important
issue is the constraint on the volume of reinforcing material: in practice, the relative
volume of steel seldom exceeds 1%. This requires either much more refined FE models
or other modeling approaches in which thin steel bars can be properly realized. Another
important extension is to consider strain softening in the concrete phase. Consequently,
transferring tension forces in concrete will be even less preferable, meaning that more
realistic designs can be suggested. Finally, the introduction of other objective functions
will also be explored.
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