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1 Abstract

A new topology optimization procedure for reinforced concrete structures is presented. The main ap-

plication is reducing weight of concrete structures, which is highly desirable due to the negative en-

vironmental impact of cement production. The distribution of both concrete and reinforcement bars is

optimized simultaneously. Concrete is modeled as a continuum exhibiting damage, into which reinforce-

ment bars are embedded. Several examples demonstrate the capabilities of the procedure in generating

efficient structures with a higher load-bearing capacity per unit weight, compared to standard designs.

The proposed approach facilitates a fully digital work flow that can unify computer-based analysis, de-

sign and production.

Keywords: Reinforced concrete, Topology optimization, Sustainability, Continuum damage

2 Introduction

Computational procedures for structural optimization play an important role in improving product design

in various industries. The automotive and aerospace industries, for example, make extensive use of such

techniques for reducing weight and increasing stiffness, among other goals. In particular, topology opti-

mization is emerging as a generic digital design tool that can be utilized in a wide range of engineering

fields, spanning from nano-scale photonics up to furniture and airplanes [34]. So far, optimal design had

little impact on traditional structural engineering as practiced in the construction industry. Considering

the specific case of reinforced concrete design, optimization is exceptionally challenging because of the

difficulty in combining numerical optimization tools with accurate constitutive models. Furthermore,
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applying continuum topology optimization procedures is problematic because of the two distinct physi-

cal scales involved: reinforcement is achieved by inserting a very small volumetric ratio of discrete steel

bars into the continuum concrete.

The drive towards sustainable structural design opens up great opportunities for applying optimiza-

tion techniques in reinforced concrete design. Cement production is responsible for roughly 5% of

man-made carbon dioxide emissions annualy [39]. In fact, 900 kg of C02 are emmitted for every 1000

kg of cement produced [26]. This motivates the search for design methodologies that facilitate weight

reduction of concrete structures while maintaining the required load carrying capacity. The purpose of

this article is to propose a computational optimization procedure aiming precisely at this goal.

Another motivating factor is the growing interest within the architectural community in topology

optimization as a means of generating aesthetic and efficient structural forms [32, 13, 36]. Until recently,

standard topology optimization procedures aimed at minimizing compliance of a linear-elastic structure

were utilized for this purpose. This of course overlooks the true behavior of the construction material,

especially in the case of concrete. Several studies that attempt to incorporate more realistic modeling

have been published recently. Liu and Qiao [23] consider different stiffnesses of concrete and steel in

order to generate layouts with distinct tension and compression members. Concrete-steel layouts were

also discussed by Bogomolny and Amir [7] where elasto-plastic modeling and interpolated yield func-

tions were used for representing the distinct stiffnesses and stress limits of the two materials. Similar

results were later reported in [25] where stress constraints were imposed instead of modeling the com-

plete nonlinear response. In a sense, the work by Victoria et al. [38] also deals with the challenge of

generating two-material tension-compression layouts but there the focus is on generating strut-and-tie

models rather than on structural forms. Despite providing an important step towards an applicable com-

putational approach, the above mentioned procedures are still far from being usable. The main reasons

are first, that the true behavior of concrete as a brittle strain-softening material is not considered; and

second, that steel is modeled as a continuum occupying unrealistic volume ratios. The current study

offers major improvements with respect to these two aspects.

Significant advancements in nonlinear finite element analysis of reinforced concrete structures facil-

itate the future development of computer-based automated design tools [16]. It is the purpose of this ar-

ticle to present a methodology that suggests a step forward towards digital design of reinforced concrete.

The procedure enables to simultaneously optimize the distribution of both concrete and reinforcement by

combining continuum- and truss-based topology optimization into a single problem formulation. In the

nonlinear finite element analysis, we use a continuum damage model for concrete [30] together with the
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embedded reinforcement formulation [31] that enables the representation of discrete reinforcement bars

(rebars). As a framework we rely on the procedure suggested in [1] where the same modeling approach

was taken but optimization was concerned only with the layout of reinforcement.

The focus of the current study is on the design of the so-called ‘D-regions’ in structural concrete

where the strain distribution is nonlinear. In practice, strut-and-tie models are widely applied for posi-

tioning and quantifying the reinforcement in such regions of the structure [27, 33], but these of course

assume a predefined shape of the concrete domain - while in our approach the distribution of concrete

is not restricted to a certain shape and is a result of the optimization process. We note that as opposed

to ‘D-regions’, in ‘B-regions’ such as beams, columns and frames, beam theory and cross-sectional

analysis are sufficient for determining the necessary reinforcement. This means that applying structural

optimization in the design of such elements may also be tackled by more simple approaches based on

cross-sectional forces, especially if the shape of the cross-section is predefined and the aim is to optimize

geometric sizes. This topic was addressed by numerous investigators since the 1970’s but is beyond the

scope of this article. Clearly, achieving minimum weight of standard, repeated members such as beams,

columns and slabs may offer a significant contribution to future practice. Based on the developments of

the current study, the intention is to continue exploring the potential of combining nonlinear FE analysis

with topology optimization procedures also for the design of beams, columns and slabs, in particular

those that can be prefabricated.

The paper is organized as follows. First the finite element analysis is described in Section 3, with

emphasis on the continuum damage model and on the embedded formulation in the context of truss

topology optimization. Next we discuss the formulation of the optimization problem, parametrization

of the design and adjoint sensitivity analysis in Section 4. Several examples of optimized reinforced

concrete structures are presented Section 5. Finally, current results and future work are discussed in

Section 6.

3 Finite element modeling

3.1 Continuum damage model for concrete

Plain concrete is assumed to behave as a strain-softening damaged continuum, according to the model

suggested in [30]. This model was utilized successfully for optimization of fiber reinforced concrete

[19, 18]. More recently, it was shown to be effective also for general reinforcement layout design [1].

The main principles of the constitutive model and its implementation in a finite element framework are
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briefly presented in this section. We rely on the framework developed in [1] where a more detailed

description of the model can be found.

Damage is assumed to be isotropic and therefore the process is defined by a single scalar variable D,

where 0≤ D≤ 1. The stress-strain relation is given by

σ = (1−D)C : ε (1)

where σ is the stress tensor, C is the elastic constitutive tensor and ε is the strain tensor. The product

C : ε is usually named the effective stress which acts on the actual resisting undamaged area (see for

example [21] for an introduction to damage mechanics). The evolution of damage is governed by the

history parameter κ . In the current study we utilize an exponential damage law [28]

D = 1− κ0

κ

(
1−α +α exp−β (κ−κ0)

)

where κ0 is a threshold value corresponding to the initiation of damage and α and β are material con-

stants. The history parameter corresponds to the extremal deformation of the material, measured in the

multiaxial case by an equivalent strain. We adopt a simple equivalent strain measure that resembles the

Drucker-Prager yield function [14]

εeq =
√

3J2 +mI1

where J2 is the second invariant of the deviatoric strain; I1 is the trace of the strain tensor; and m is a

material property that can be related to the ratio of strengths in uniaxial tension and compression. This

equivalent strain measure is essentially used as a ‘damage detection surface’: once the equivalent strain

at a certain material point exceeds the threshold value κ0, damage begins to evolve at that point. The

value of κ0 is set so that in uniaxial tension, damage will initiate when the cracking strain of concrete

is exceeded. This means that for the particular case of uniaxial tension, the criterion εeq−κ0 = 0 is the

same as the Rankine criterion.

An important feature of this particular damage model is the nonlocal formulation achieved by con-

sidering also spatial gradients of the equivalent strain. Thus typical difficulties in modeling of strain-

softening materials are avoided, namely ill-posedness and mesh dependency (e.g. [3]). Assuming that

the nonlocal equivalent strain denoted ε̄eq represents a weighted average of the local measure εeq over a
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certain region, the following partial differential equation can be derived

ε̄eq− c∇
2
ε̄eq = εeq (2)

where c is of the dimension length squared in 2-D and length cubed in 3-D. We note that Eq. 2 is

solved using a finite element discretization with the natural boundary conditions and can be conveniently

coupled to the governing state equation of static equilibrium.

Applying the nonlocal approach, κ is determined at each material point according to the nonlocal

equivalent strain ε̄eq through the Karush-Kuhn-Tucker conditions

κ̇ ≥ 0, ε̄eq−κ ≤ 0, κ̇(ε̄eq−κ) = 0

meaning that a) κ never decreases; b) κ ‘registers’ the extremal nonlocal equivalent strain; and c) when

κ grows, then necessarily κ = ε̄eq.

As in typical approaches to material nonlinearity, the evolution of damage is represented as a process

evolving in ‘time’. Discretization of time is achieved by applying an incrementation scheme. For every

time increment, the weak form of the partial differential equilibrium equation is discretized using finite

elements, leading to the force balance equation

fu
ext − fu

int = 0

where fu
ext is the nodal external force vector accounting for volumetric, boundary and point loads. Simi-

larly, the spatial discretization of Eq. (2) leads to

fε −Kεε
ε̄eq = 0

Then the typical iterative system of equations to be solved by the Newton-Raphson method, with iterative

displacements and nonlocal equivalent strains as unknowns at cycle i, is expressed as

 Kuu
i−1 Kuε

i−1

Kεu
i−1 Kεε


 δui

δ ε̄eq,i

=

 fu
ext

fε
i−1

−
 fu

int,i−1

Kεε ε̄eq,i−1

 (3)

where the incremental index is omitted for a clearer presentation. With the shape functions collected

in N and Ñ for the displacements and the nonlocal equivalent strains respectively (the shape functions

5



are not necessarily of the same order); and with their derivatives collected in B and B̃ respectively, the

components of Eq. (3) are

Kuu
i−1 =

∫
Ω

BT (1−Di−1)CBdΩ

Kuε
i−1 = −

∫
Ω

BT Cε i−1qi−1ÑdΩ

Kεu
i−1 = −

∫
Ω

ÑT
(

∂εeq

∂ε

)T

i−1
BdΩ

Kεε =
∫

Ω

(
ÑT Ñ+ B̃T cB̃

)
dΩ

fu
int,i−1 =

∫
Ω

BT
σ i−1dΩ

fε
i−1 =

∫
Ω

ÑT
εeq,i−1dΩ

Path-dependency enters the formulation through the scalar q which is non-zero only if κ (and therefore

damage) is evolving with respect to the value at the previous converged increment denoted κold

qi−1 =


(

∂D
∂κ

)
i−1

if ε̄eq,i−1 > κold

0 if ε̄eq,i−1 ≤ κold

In practice, a displacement-controlled incrementation is more suitable due to the strain-softening

response. This means that a prescribed iterative displacement, denoted δup, is enforced at a particular

degree of freedom (DOF). Then we have an unknown iterative load factor δθ instead of δup and the

corresponding iterative equation system is slightly modified accordingly. In order to avoid modifying the

tangent stiffness matrix (and for keeping its structure) we implement displacement control as suggested

in [2].

3.2 Embedded reinforcement formulation

The main contribution of this study is in the simultaneous layout optimization of two material phases,

concrete and steel reinforcement, that differ in geometrical scale as well as in mechanical behavior. Con-

crete occupies a continuum domain while steel rebars are essentially line components inserted into this

domain before casting the concrete. Accordingly, in finite element procedures concrete is typically mod-

eled by 2-D or 3-D continuum elements while rebars are represented by 1-D bar elements, having only

axial stiffness. For optimizing the distribution of both phases within a single computational procedure,

the so-called embedded formulation is employed. The embedded formulation was initially suggested in

[31] and later extended in [12]. The main idea is that the stiffness of each individual rebar is added to
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the stiffness of the surrounding concrete domain. In the current study, the bars are considered as linear

elastic; nevertheless, considering elasto-plasticity does not affect the general applicability of the design

approach.

Using the embedded formulation, the topological design problem consists of merging continuum-

based and truss-based topology optimization approaches into a single design procedure. In continuum

topology optimization, the design domain is typically discretized using a structured grid mesh with equi-

lateral elements. In truss topology optimization, a so-called ‘ground structure’ is constructed such that

it consists of all possible connectivities of bars within the design domain. These practices make the

embedded formulation very attractive because the complete truss ground structure can be embedded into

the continuum grid in a relatively simple manner. Moreover, practical design requirements can be auto-

matically considered due to the flexibility in the generation of the truss ground structure. Examples are

physical spacing between bars; clear concrete cover with no reinforcement near the edges of the domain;

and orthogonal reinforcement patterns (without diagonal bars) which are easier to construct. Demon-

strative examples for truss structures embedded into a structured grid in 2-D are presented in Figure 1.

(a) The basic building block: truss bars em-
bedded into a hosting square element

(b) A basic building block but with bigger
physical spacing between bars

(c) Closely-spaced truss ground structure
with clear cover near the edges

(d) Same as (c) but without diagonal bars

Figure 1: Demonstrative examples for truss structures embedded into a structured grid
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The superposition of bar stiffnesses onto the hosting element stiffnesses is straightforward due to the

way the ground structures are created. In essence, no element-level embedding is necessary because the

truss elements share the same nodes as the hosting elements. This of course does not imply any loss of

generality of the approach: the user may define bars in any location and embed them into the respective

hosting elements. However, using a regularly-spaced truss structure with nodes that are compatible to

those of the hosting mesh simplifies the embedding process by turning it into a global-level operation.

Finally, the contribution of the embedded truss structure to the global stiffness and internal force is

added to the stiffness matrix and to the internal forces of the continuum domain. For a strain-softening

response it is common to use displacement-controlled incrementation, meaning that the magnitude of a

certain displacement is incrementally increased up to a prescribed value, as opposed to a gradual increase

of the load. The typical iterative system (3) is modified to

 Kuu
i−1 +Kbars Kuε

i−1

Kεu
i−1 Kεε


 δui

δ ε̄eq,i

=

 δθ f̂u
ext

fε
i−1

−
 fu

int,i−1 + fbars
int

Kεε ε̄eq,i−1

 (4)

where Kbars and fbars
int are the global stiffness matrix and internal forces corresponding to the complete set

of truss bars; δθ is an unknown iterative load factor and f̂u
ext is a fixed reference load vector. One of the

components in δu, denoted δup, is prescribed according to the chosen incrementation strategy. Solution

of the system (4) can be obtained either by interchanging δup with δθ or by applying a specialized

scheme [2] that maintains the pattern of the stiffness matrix. As above, incremental indices are omitted

for clarity of the presentation.

4 Topology optimization

In this section, we present the formulation of the optimization problem and some details regarding the

sensitivity analysis. In essence, we combine the classical density-based approach to continuum topology

optimization [5, 4] together with the ground structure approach to truss topology optimization (see also

[6] for an overview of both methods). The entities to be optimized are the spatial distribution of concrete

and the cross-section areas of the steel bars. Distribution of concrete is represented by a density-like

variable in each finite element, where a value of zero corresponds to void and a value of 1 corresponds to

solid concrete. Each rebar segment is also represented by a design variable ranging from zero to 1, with

the actual cross-section area given by a linear interpolation.
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In the proposed design procedure, the goal of topology optimization is to minimize the volume of

concrete subject to constraints on: 1) The load-bearing capacity of the structure; 2) The available volume

of steel. Both concrete and steel rebars are freely distributed for achieving this aim. The nested approach

to structural optimization is followed, meaning that the analysis is performed separately, leaving only the

design variables inside the problem formulation

min
x

φ(x) =
∑

Nelem
i=1 x̄i

Nelem

s.t.: g1(x) =−θNin f̂ pup
Nin

+g? ≤ 0

g2(x) =
Nbars

∑
i=1

aili−ρV ≤ 0

0≤ xi ≤ 1, i = 1, ...,(Nbars +Nelem) (5)

with: Rn(un,θn, ε̄eq,n,κn−1,x) = 0 n = 1, ...,Nin

Hn(ε̄eq,n,κn,κn−1) = 0 n = 1, ...,Nin−1

where Nelem, Nbars and Nin are the number of continuum elements, the number of truss bars and the

number of increments, respectively; x̄ represents the physical distribution of concrete, related to the

mathematical variables x via filtering and projection operations; a represents the physical cross-section

areas of the truss bars, related to the mathematical variables x via an interpolation function; the vector l

contains the bar lengths; g? is a limit on the end-compliance of the structure; ρ is the volumetric ratio of

reinforcement; and V is the volume of the design domain. We note that φ is a simplified measure of the

concrete volume fraction which is applicable when using a structured grid, where all elements have the

same volume. This does not affect the generality of the formulation.

We choose to minimize volume subject to a constraint on compliance rather than vice-versa due

to difficulties related to combining optimization with the damaged model. Comparing to standard

minimum-compliance topology optimization procedures with linear-elastic materials, the consideration

of damage introduces severe nonlinearity into the optimization problem. According to the author’s ex-

perience, attempting to maximize the end-compliance subject to a volume constraint (the equivalent of

compliance minimization in linear-elastic topology optimization) requires very conservative optimization

strategies. This is because any change in the distribution of concrete leads to a corresponding change in

the damage pattern. This results in ‘zig-zag’ updates of the design variables which can only be avoided

by enforcing small step sizes on the update. Beginning with a full concrete domain eliminates this dif-

ficulty and leads to a much smoother optimization process. Furthermore, we use a continuation scheme

where penalization and projection parameters are gradually increased. This also has a stabilizing effect
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on the progress of the optimization.

In order to improve transparency in the presentation of the sensitivity analysis procedure, we artifi-

cially represent the structural analysis as a series of coupled equation systems corresponding to each of

the ‘time’ increments. The first equation system is the global nonlinear incremental equilibrium that can

be expressed as

Rn(un,θn, ε̄eq,n,κn−1,x) =

 θ f̂u
ext −

(
fu
int + fbars

int
)

fε −Kεε ε̄eq


n

= 0

where the unknowns at a certain increment n are the displacements un, the load factor θn and the nonlocal

equivalent strains ε̄eq,n; κn−1 are the history parameters at the previous converged step, on a gauss point

level; and x is the vector of design variables. The second system is a collection of local equations which

trace the path-dependencies throughout the evolution of damage

Hn(ε̄eq,n,κn,κn−1) = 0

At each point, two possible states exist

Hn =

 κn− ε̄eq,n if ε̄eq,n > κn−1

κn−κn−1 if ε̄eq,n ≤ κn−1

where we note that ε̄eq,n, κn and κn−1 are Gauss point quantities. The relation to the nodal quantities used

above is given by ε̄eq,n = Ñε̄
e
eq,n where ε̄

e
eq,n are the nodal nonlocal equivalent strains in element e.

For obtaining an effective constraint on the end-compliance, a reasonable evaluation of g? is required.

For this purpose, we rely on results of a recent study, where truss topology optimization was utilized to

distribute a given volume of steel reinforcement bars within a fixed concrete domain so that the stiffest

structure is obtained [1]. The value of g? represents a certain compromise with respect to the performance

of the fixed concrete domain. For example, g? can be set to 80% of the end-compliance of a full concrete

structure with optimized reinforcement; then, a desirable result is that the minimum volume procedure

generates a design using significantly less material than 80% of the design domain. We note that the

compliance measure takes into account only the prescribed DOF (denoted by the superscript p), but we

apply concentrated loads that are distributed locally in the vicinity of the prescribed DOF so that a better

finite element approximation is obtained.
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4.1 Design parametrization

In the problem formulation (5), continuum- and truss-based topology optimization are combined into one

unified procedure. The design variables x correspond either to a continuum concrete element or to a steel

rebar. For the finite element evaluation of the structural response, the design variables are transformed

into physical quantities corresponding either to the ‘density’ of concrete or to the cross-section area of

the steel bar. These are then used for computing the tangent stiffness and the internal forces.

For the concrete elements, first a standard density filter is applied [10, 8] with a simple linear weight-

ing function to obtain x̃. The purpose of applying a density filter is to overcome the well-known difficulty

of artificial checkerboard patterns as well as to introduce a length scale in the design, thus avoiding results

with very thin features that are difficult to manufacture. Then, a Heaviside projection function [17, 40]

is utilized in order to ‘push’ the design towards a distinct 0-1 (or void-material) layout

x̄i =


η
[
e−βHS(1−x̃i/η)− (1− x̃i/η)e−βHS

]
0≤ x̃i ≤ η

(1−η)
[
1− e−βHS(x̃i−η)/(1−η)+

(x̃i−η)/(1−η)e−βHS
]
+η η < x̃i ≤ 1

(6)

where η is a threshold value and βHS is a parameter determining the ‘sharpness’ of the smooth projection

function. In the current study we use η = 0.5, meaning that any filtered density above 0.5 is projected

to 1 and any value below 0.5 is projected to 0. The initial value of βHS is set to either 0 or 1 and it

is increased gradually as the optimization progresses. Heaviside projections are typically introduced

in order to achieve crisp black-and-white layouts which are necessary in some design problems due to

manufacturing requirements. This is not the case in concrete structures where a gradual reduction of

thickness in the boundary of a hole is reasonable. Nevertheless, we use the projection with only mild

values of βHS (up to 4) in order to get clear topological layouts which can help understanding the load-

carrying mechanism and the optimal placement of material.

At each material point represented by a finite element in the computational model, Young’s modulus

of concrete is a function of the physical density following a modified SIMP rule [4, 35]

E(x̄i) = Emin +(Emax−Emin)x̄
pE
i (7)

where Emin is given a small positive value in order to avoid numerical difficulties; Emax is the actual value

of Young’s modulus for concrete; and pE is a penalization factor. In linear-elastic topology optimization

procedures, pE is typically set to 3. In the current implementation, we use a continuation scheme where

11



the penalty begins at 1 (linear interpolation) and is gradually increased to 3 so that distinct 0-1 designs are

favorable. In principle, the interpolation (7) can accommodate also the case of distributing two materials

(such as ‘soft’ and ‘stiff’ concrete) but this application is not within the scope of the current study. The

dependence on density introduces a design dependence in the constitutive model (1) that now reads, for

a certain element i and Gauss point gp

σ
gp
i = (1−Dgp

i )E(x̄i)C0
ε

gp
i (8)

where C0 is a parametric constitutive tensor corresponding to E = 1. Note that matrix-vector notation is

used here as opposed to tensor notation in (1).

As for the steel bars, the relation between the mathematical design variable and the corresponding

area of bar i is given by a linear interpolation

ai(xi) = amin +(amax−amin)xi

where ai is the cross-section area; amin and amax are lower and upper bounds of the desired range of

areas; and xi is the design variable. The choice of amin and amax gives the user control over the outcome

of optimization. For example, amin may correspond to minimal reinforcement requirements. Another

possibility is that amin and amax represent the range of bar types that are available for construction.

In principle, concrete and steel bars are distributed independently so it is possible to obtain an opti-

mized layout where steel bars are ‘floating’ inside a void area which is not occupied by concrete. This

of course is an undesirable result that can be avoided by penalizing (artificially reducing) the stiffness of

such steel bars. This is performed in a manner similar to that of the standard density filter. Each bar is

associated with a neighborhood of continuum elements. This includes all elements whose centroid lies

within a certain distance from the bar’s centroid. Then the filtered design variable of the bar is given by

x̃i = xi
1

Ni j
∑
j∈Ni

(x̄ j)
pE (9)

where xi is the mathematical variable corresponding to bar i; Ni is the neighborhood of the bar; Ni j is

the number of elements in the neighborhood; x̄ j is the physical density of a concrete element j in the

neighborhood; and x̃i is the resulting filtered variable of the bar. In other words, within concrete regions

of low density, the value of xi is penalized in the same way as is the stiffness of the concrete. Then, the
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stiffness matrix of the bar is given by the modified SIMP rule

Ki = Es(amin +(amax−amin)x̃
pbar
i )K0

i

where Es is Young’s modulus of steel; pbar ≥ 1 is a penalization factor and K0
i is a parametric stiffness

matrix of the bar for E = 1, a = 1. In principle, the most freedom is given to the optimization procedure

when no penalization is considered (pbar = 1). The result in terms of continuously varying bar areas

can then be post-processed to fit available bar types in practice. Nevertheless, one may consider adding

penalization (pbar > 1) for various purposes. Examples are to approach a discrete design with a single bar

type; or to obtain a ‘clean’ layout with realistic physical spacing between bars when the ground structure

is relatively dense. For further discussion on this aspect the reader is referred to [1].

4.2 Sensitivity analysis

For using a first-order nonlinear programming method, we need to compute derivatives of the objective

and of the general constraints with respect to changes in the design variables. The objective depends

only on design variables attached to concrete elements. The sensitivity is given by the chain rule

∂φ(x)
∂xi

=
1

Nelem

∂ x̄i

∂ x̃i

∂ x̃i

∂xi

where the density filtering operation and (6) are differentiated to obtain the partial derivatives. Similarly,

the reinforcement volume constraint g2(x) = ∑
Nbars
i=1 aili − ρV dependes only on variables attached to

rebars. It is differentiated to give

∂g2(x)
∂xi

= (amax−amin)li

The constraint on the end-compliance g1(x) involves also state variables so the sensitivities are com-

puted by an adjoint procedure. The representation of the structural analysis as a transient coupled prob-

lem enables utilization of the framework by Michaleris et al. [29] which in our opinion leads to a rather

transparent and convenient adjoint sensitivity analysis procedure. The procedure will be shortly pre-

sented in the following. For full details the reader is referred to [1] where the same functional was used

as an objective. The constraint is expressed as a function of design and state variables, corresponding
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only to the final temporal state denoted by Nin

g1(x) = ḡ1(uNin(x),θNin(x), ε̄eq,Nin(x),κNin−1(x),x) =−θNin f̂ pup
Nin

+g?

We begin by writing the augmented functional

ĝ1(x) = ḡ1(uNin(x),θNin(x), ε̄eq,Nin(x),κNin−1(x),x)

−
Nin

∑
n=1

λ
T
n Rn(un(x),θn(x), ε̄eq,n(x),κn−1(x),x)

−
Nin−1

∑
n=1

Ngp

∑
gp=1

γnHn(ε̄eq,n(x),κn(x),κn−1(x))

where λ n and γn are incremental adjoint vectors in the global and local level respectively; and Ngp is the

number of Gauss points in the finite element. The design sensitivities with respect to a certain variable

xi are then obtained from the explicit derivatives of the augmented functional

∂g1

∂xi
=

∂ ĝ1exp

∂xi
=

∂ ḡ1

∂xi
−

Nin

∑
n=1

λ
T
n

∂Rn

∂xi
=−

Nin

∑
n=1

λ
T
n

∂Rn

∂xi
(10)

The adjoint variables λ n are determined by requiring that all implicit derivatives of the augmented

functional are eliminated. This leads to a series of backwards-incremental linear systems of equations.

The first system to be solved corresponds to the final increment Nin

K̃T
Nin

λ Nin =


−
{

∂ ḡ1

∂u f
Nin

}T

∂ ḡ1
∂θNin

−
{

∂ ḡ1
∂ ε̄eq,Nin

}T


=


0

− f̂ pup
Nin

0

 (11)

where the first part of the right-hand-side vector corresponds to free (non-prescribed) DOF, denoted by

the superscript f ; the second part corresponds to the prescribed DOF, denoted by the superscript p; and

the third part corresponds to nonlocal equivalent strains DOF. The matrix K̃Nin is the same as KNin except

for a modification of the column denoted by the superscript p corresponding to the prescribed DOF

K̃ f
Nin

= K f
Nin

K̃p
Nin

=
∂RNin

∂θNin

Stepping backwards to increment Nin− 1, we aim to eliminate the implicit derivatives ∂κNin−1

∂x . This
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is achieved by setting the local adjoint variables

γNin−1 =
∂ ḡ1

∂κNin−1
−
{

∂RNin

∂κNin−1

}T

λ Nin =−
{

∂RNin

∂κNin−1

}T

λ Nin

where the equality ∂HNin−1

∂κNin−1
= 1 was utilized. The derivative ∂RNin

∂κNin−1
is non-zero only in points where path-

dependency occurs at increment Nin, meaning damage was determined by κNin−1 rather than by ε̄eq,Nin .

From here a general form for the global adjoint equation that holds for increments n = 1, ...,Nin− 1 is

revealed. It is the same as Eq. (11) but has no derivatives of ḡ1 and has an additional right-hand-side

term involving γn which introduces the path-dependency. This additional term is an assembly onto the

global level of local terms corresponding to points where ∂Hn
∂ ε̄eq,n

is non-zero. Then the linear system to be

solved in the general increment is

K̃T
n λ n =


0

0{
ÑT ∂Hn

∂ ε̄eq,n
γn

}
 (12)

Finally, the general form for the expression used to compute the local adjoints, that holds for increments

n = 1, ...,Nin−2 is revealed as

γn =−
{

∂Rn+1

∂κn

}T

λ n+1−
∂Hn+1

∂κn
γn+1 (13)

During the process of stepping back in ‘time’, the incremental contributions to the sensitivity (10) are

collected. For reinforcement bars we have ∂Rn
∂xi

= − ∂(fbars
int )n
∂xi

. This involves the derivative of the internal

forces with respect to the filtered variable, multiplied by the differentiation of the filtering operation (9),

yielding

∂Rn

∂xi
=−

∂
(
fbars
int
)

n
∂ x̃i

∂ x̃i

∂xi
=
(
−pbarx̃

(pbar−1)
i (amax−amin)EsK0

i un,i

) 1
Ni j

∑
j∈Ni

(x̄ j)
pE

where un,i are the displacements computed at increment n in the i−th bar’s degrees of freedom; and the

index j represents concrete elements within the neighborhood of the bar i. For concrete elements we

have ∂Rn
∂xi

=− ∂(fu
int+fbars

int )n
∂xi

because concrete densities contribute not only to concrete forces but also to bar

forces via the filtering of the bar variables (9). Applying the chain rule gives

∂Rn

∂xi
=−

(
∂ (fu

int)n
∂ x̄i

+
∂
(
fbars
int
)

n
∂ x̃ j

∂ x̃ j

∂ x̄i

)
∂ x̄i

∂ x̃i

∂ x̃i

∂xi
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where the index i represents a certain concrete element; the index j represents a certain bar which has

the element i within its neighborhood; and the following expressions are used

∂ (fu
int)n

∂ x̄i
=

Ngp

∑
gp=1

wJBT ∂σ
gp
i

∂ x̄i

∂σ
gp
i

∂ x̄i
= (1−Dgp

i )C0
ε

gp
i (Emax−Emin)pE x̄pE−1

i

∂ x̃ j

∂ x̄i
= x j

1
N ji

pE x̄pE−1
i

For clarification, w and J are the weight and the determinant of the Jacobian corresponding to the Gauss

point; and N ji is the number of concrete elements present in the neighborhood of bar j (notice the swap

of indices with respect to the original formula).

Concluding this section, we note that the computed design sensitivities were found to be in perfect

agreement with numerical derivatives based on finite differences.

5 Examples

Several examples of optimized reinforced concrete designs are presented in this section. In the cur-

rent study, the proposed procedure is applied to the design of load-bearing structures that qualify as

‘D-regions’, where self-weight is insignificant with comparison to the external load. The loads are in

principle point forces which are distributed locally in order to avoid artificial stress concentrations due to

the finite element discretization. A small prescribed displacement is imposed at the central loading point

and the analysis is performed using displacement control with adaptive incrementation. In the examples

presented, the number of increments was usually between 6 to 10 and the number of Newton-Raphson

iterations per increment between 1 to 5. In all examples, the continuum mesh for concrete consists of

square, 4-node bi-linear plane stress elements. Material properties are kept constant for all examples as

presented in Table 1. The de-localization parameter c in Eq. (2) is set according to the particular geom-

etry. The procedure is implemented in FORTRAN and the optimization is performed by the Method of

Moving Asymptotes - MMA [37].

Table 1: Material properties used in all examples
Emin [MPa] Emax [MPa] ν κ0 m α β Es [MPa]

300 30,000 0.2 1.818×10−4 0.818 0.95 100 200,000

An important aspect of the implementation is the continuation scheme. The penalization parameters

pE and pbar, as well as the Heaviside projection parameter βHS, are gradually increased as described
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in Table 2. Applying strong penalization and sharp projection from the beginning of the optimization

process may aggravate difficulties due to the highly nonlinear and non-convex nature of the problem.

This is avoided by the gradual continuation. As a consequence, a fixed number of iterations is performed

instead of enforcing a strict convergence tolerance.

Table 2: Implemented continuation schemes
Deep beam Corbel Wall

Iterations pE pbar βHS pE pbar βHS pE pbar βHS

1-100 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00
101-200 2.00 1.05 2.00 2.00 1.00 0.00 2.00 1.00 0.00
201-300 3.00 1.10 4.00 3.00 1.00 1.00 3.00 1.00 1.00
301-400 3.00 1.05 2.00 3.00 1.05 2.00
401-500 3.00 1.10 4.00 3.00 1.10 4.00

In the current implementation, the truss ground structures consist of bars in 0 and 90 degrees; in

some cases we allow diagonal (45 degrees) bars as well. The purpose is to reflect the practical preference

for such layouts, but this might pose a certain limitation as the flow of forces is affected by the direction

of the bars. We note that the design approach is general and can accommodate any bar pattern. It is

expected that by allowing more diverse bar directions, performance can be improved even further; this

effect will be examined in future work.

As will be seen in the following examples, steel rebars are positioned primarily in tensile regions

where concrete is damaged. In some cases, rebars are also used for stiffening compressive regions.

This is expected because the solution of (5) represents a trade-off between concrete volume and load-

bearing capacity. Positioning stiff rebars in compression enables the reduction of concrete volume while

satisfying the compliance constraint. In case the designer wishes to avoid reinforcement in compression,

the problem formulation can be modified accordingly, for example by: 1) Minimizing also the steel

volume; or 2) Considering an artificial material model for steel where compression is penalized.

5.1 Deep beam

As a first example we consider the design of a deep beam. The problem setting and the computational

model for analysis and optimization are presented in Figure 2. Our main result refers to a ground structure

consisting of 5,580 elements and 2,250 bars, meaning a total of 7,830 design variables. The truss ground

structure consists of horizontal, vertical and diagonal bars arranged regularly with a spacing of 9 finite

elements (roughly 0.1m) between adjacent horizontal and vertical bars. The values of amin and amax are

set to zero and 4.0× 10−3[m2/m] respectively and c = 4.2× 10−3[m2]. The constraint on compliance

denoted as g? in the problem formulation (5) is set to 2.8× 10−2[kNm], which is roughly 80% of the
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load-bearing capacity of the full concrete beam with optimized reinforcement as reported in [1]. The

available volume of steel is 0.5% of the volume of the design domain; the prescribed displacement is

0.5[mm] and the filter radius is 0.035[m].

0.
64

5m
, n

el
y 

=
 6

0

1.0m, nelx = 93

Up = 0.5 mm

5 loaded
nodes

5 supported
nodes

clear cover
3 elements

Figure 2: Problem setting and computational model, symmetric half of a 2-D deep beam

The evolution of the objective function and the layouts obtained at every step of the continuation

scheme are presented in Figure 3. It can be seen that concrete is gradually cut out of unnecessary regions

and new holes are created. At the same time, most of the steel is positioned in the bottom fiber in order

to resist the tensile forces. A small portion of steel is also positioned in the vicinity of the concentrated

load due to its higher stiffness that is clearly preferable for enhancing the load-bearing capacity. The

resulting structure can bear 80% of the load that can be carried by a full concrete beam, but its weight

is only 65.6% of the weight of the full beam. This means that per unit weight, we achieve 22% more

load-bearing capacity compared to the standard full beam. This demonstrates the potential of utilizing

optimization procedures to reduce material consumption while ensuring a viable design.

The same example problem was examined with a reinforcement ground structure that does not con-

tain diagonal rebars. This is typically preferable due to easier construction. The resulting distribution of

concrete is practically identical in both cases, and the only difference is in the absence of rebars under the

loaded region. Essentially, the optimization procedure could not fit rebars effectively into the diagonal

concrete member so no reinforcement was positioned in this region. As compensation, the minimized
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Figure 3: Topology optimization of a deep beam: convergence of the objective and snapshots of the
optimized layouts. The final design occupies 65.6% of the whole design domain but can bear 80% of the
load carried by the whole beam.

volume achieved was 66.0% compared to 65.6% with the diagonal rebars available. Both layouts are

presented for comparison in Figure 4.

Looking towards practical application of optimization in structural design, an important observation

is that a conventional linear-elastic topology optimization procedure yields a design that is inferior in

performance compared to the design obtained with the damage-based procedure. For investigating this

aspect, we first performed a standard minimum compliance topology optimization with a volume con-

straint corresponding to our proposed design, i.e. a volume fraction of 65.6%. Then we embedded the

optimized reinforcement layout and ran 100 design iterations (with the parameters of stage 3 in Table

2), to allow for redistribution of both concrete and steel. The starting and final layouts are presented

in Figure 5. The result is that with the starting design, the compliance constraint is violated; and with

the final design, the constraint is fulfilled but the concrete volume fraction is raised to 69.8%. This

means that employing a more elaborate material model is worthwhile, despite the cost in heavier com-

putation. Furthermore, this comparison clarifies that the applicability of optimization procedures based

on linear-elastic modeling is limited when considering design with other materials that exhibit nonlinear

phenomena such as damage, fracture or plasticity.
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(a) Ground structure includes diagonals, φ = 0.6564

(b) Ground structure without diagonals, φ = 0.6601

Figure 4: Topology optimization of a deep beam: final layouts and objective values with two different
reinforcement ground structures.

(a) First iteration: φ = 0.6564 but compliance constraint is vio-
lated

(b) After 100 iterations: φ = 0.6980 and constraints fulfilled

Figure 5: Topology optimization of a deep beam with an initial design obtained from a linear-elastic
procedure: performance is inferior compared to the proposed damage-based procedure.
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5.2 Corbel

In this example we consider the design of a 2-D corbel, which was previously examined by several

researchers in the context of applying continuum topology optimization for generating strut-and-tie

models [22, 20, 9, 38]. The setting of the problem is given in Figure 6. The ground structure con-

sists of 6,372 elements and 3,606 bars, meaning a total of 9,978 design variables. The truss ground

structure consists of horizontal, vertical and diagonal bars arranged regularly with a spacing of 6 finite

elements (0.1m) between adjacent horizontal and vertical bars. The values of amin and amax are set to

zero and 4.9× 10−3[m2/m] respectively and c = 4.4× 10−3[m2]. The constraint on compliance is set

to 6.0×10−2[kNm], corresponding to 80% of the load-bearing capacity of the full concrete corbel with

optimized reinforcement [1]. The available volume of steel is 0.5% of the volume of the design domain;

the prescribed displacement is 0.5[mm] and the filter radius is 0.05[m].
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Figure 6: Problem setting and computational model, 2-D corbel

The evolution of the objective function and the layouts obtained at every step of the continuation

scheme are presented in Figure 7. Steel rebars are mainly positioned in the vicinity of the reentrant corner

where the highest tensile stresses appear. Additionally, a few rebars are positioned near the perimeter of

21



the corbel and act in compression. Again, the optimized design offers significant reduction in material

consumption. The ratio of load-bearing capacity to weight is improved by nearly 32% compared to the

standard full concrete domain.

Figure 7: Topology optimization of a corbel: convergence of the objective and snapshots of the optimized
layouts. The final design occupies 60.8% of the whole design domain but can bear 80% of the load carried
by the whole corbel.

In principal, the optimized layout resembles the results obtained in the studies mentioned above

that focused on using topology optimization for generating strut-and-tie models. However, the current

approach cannot be directly compared to such procedures because it yields a final design that does not

occupy the complete domain; while in the strut-and-tie modeling approach the actual sizing of members

(as well as the choice of material for tensile members) is performed in a post-processing stage. In

most studies [22, 20, 9], it was proposed to use layouts generated by linear elastic minimum-compliance

procedures as strut-and-tie models. Once the model is determined, the designer needs to decide which

material (concrete or steel) to use for the members undergoing tension and to size all members, according

to the magnitude of the forces. As an exception, in [38] different stiffnesses for steel and concrete were

considered when generating the optimized layout but the result still needs to be post-processed: the sizing

of members does not consider stress limits and steel is modeled as a continuum rather than by discrete

bars.

In this study, we do not attempt to generate strut-and-tie models. The main goal is to cut out un-

necessary concrete, and naturally we obtain layouts that look like strut-and-tie models; but the choice
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of material as well as the sizing are performed automatically. This is due to the more realistic approach

taken based on: a) The consideration of damage; and b) The embedding of reinforcement bars. Conse-

quently, concrete members in the optimized layout are sized according to their true stress state, whether

it is dominated by tension or by compression. Moreover, ‘ties’ to be designed in steel can only be given

a standard shape (defined by the ground structure) whereas in most previous studies they were freely po-

sitioned due to the continuum modeling. Another important result obtained with the proposed procedure

is the utilization of concrete in tension. This is demonstrated on the corbel example, see Figure 8. In

the optimized layout, some of the tensile members are made of plain concrete which is utilized up to the

allowable tensile stress. Such resolution cannot be captured by optimization procedures based on linear

elasticity.

5.3 Wall with opening

In this example we aim at optimizing the design of a wall with an opening, see Figure 9 for the problem

setting. Schlaich et al. [33] gave it thorough consideration when demonstrating the strut-and-tie modeling

approach for design of structural concrete. It was also used as an example for applying continuum

topology optimization as a means of generating strut-and-tie models [22, 20, 9, 38]. The ground structure

consists of 13,200 elements and 2,780 bars, meaning a total of 15,980 design variables. The truss ground

structure consists of horizontal and vertical bars arranged with varying spacing between adjacent bars,

see the first snapshot in Figure 10. The values of amin and amax are set to zero and 8.01× 10−3[m2/m]

respectively and c = 9.8×10−2[m2]. The constraint on compliance is set to 1.5[kNm], which is slightly

higher than the load-bearing capacity of the initial design - a full concrete domain with evenly distributed

reinforcement (meaning the first few iterations are infeasible). The available volume of steel is 0.5% of

the volume of the design domain; the prescribed displacement is 2.5[mm] and the filter radius is 0.3[m].

The evolution of the objective function and the layouts obtained at every step of the continuation

scheme are presented in Figure 10. The load is transferred to the right-hand-side support via a thick

concrete block; and to the left-hand-side support via a system of tension and compression members.

Reinforcement bars are mainly used in the bottom fiber and to reduce damage around the window. Some

reinforcement is also added above the right-hand-side support that bears most of the load. As with the

corbel, the optimized layout is in principal similar to a strut-and-tie model but offers a detailed design

that accounts for the tensile capacity of concrete.

We now turn to demonstrate the effect of the filter (9) that is applied in order to avoid uncovered steel

rebars in the optimized layout. The optimized design of the wall is compared to that obtained without
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(a) Optimized layout,
φ = 0.6077

(b) Damage in the optimized layout

(c) Principal stresses in the opti-
mized layout

(d) Maximum principal stress σ1 in the opti-
mized layout

Figure 8: Topology optimization of a corbel: for achieving maximum stiffness, concrete is utilized in
tension up to its allowable tensile stress (3 MPa). This causes slight damage in plain concrete regions.
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Figure 9: Problem setting and computational model, 2-D wall with opening

Figure 10: Topology optimization of a wall with an opening: convergence of the objective and snapshots
of the optimized layouts. The final design occupies 72.1% of the whole design domain but can bear more
than the load carried by the whole wall with evenly distributed reinforcement.
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such filter in Figure 11. When no filter on bar areas is applied, we obtain ‘floating’ rebars that are not

properly covered by concrete. From a pure optimization point of view, this yields a superior objective

because these bars are used as stiffeners of holes, thus facilitating further reduction in the volume of

concrete. However, from a practical point of view such a result is undesirable and it can be seen that by

applying the filter, most of the isolated rebars are eliminated. It is possible that slightly higher penalty

values are necessary for completely eliminating all isolated bars.

(a) No filter applied on bar variables: steel bars are used to strengthen the holes yielding a better
objective, φ = 0.7084

(b) Bar variables are filtered according to the neighboring concrete densities: no exposed rebars
and a higher objective, φ = 0.7207

Figure 11: Topology optimization of a wall with an opening: the effect of applying a filter to ensure
rebars are covered by concrete.
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6 Discussion

A new computational procedure for optimizing reinforced concrete structures was presented. The main

idea is to combine realistic finite element modeling of reinforced concrete with topology optimization

procedures based on a completely consistent sensitivity analysis. Concrete is modeled as a continuum

where strain-softening response is considered by means of a nonlocal damage model. Reinforcement is

represented by a set of all acceptable positions of rebars and is embedded into the continuum concrete do-

main. Both phases, concrete and reinforcement, are designed simultaneously in a topology optimization

procedure combining truss-based and continuum-based methods.

The main goal is to achieve a reduction in the weight of concrete structures. This is motivated by

the need to reduce cement production which is a major source of CO2 emissions. Facilitating the design

of lighter concrete structures can therefore be seen as a crucial step towards sustainable design. With

respect to the load-bearing capacity per unit weight, it was shown that the optimized designs perform

20% to 30% better than standard structures. Furthermore, several examples demonstrate the benefits of

utilizing a relatively elaborate material model that requires a path-dependent nonlinear analysis and a

corresponding sensitivity analysis. The resulting designs outperform those obtained by standard proce-

dures based on linear elasticity, due to the consideration of the true material properties. In this study

we only considered weight and load-bearing capacity as the objective and constraint. Nevertheless, the

methodology is general and other quantities such as cost or extent of cracking can be introduced based

on proper modeling.

As of today, the main application of topology optimization in reinforced concrete design is in gen-

erating strut-and-tie models. While the references mentioned throughout the text focus on generating

the strut-and-tie model which then needs to be solved for dimensioning, in the current approach several

design steps are performed within a single computational procedure: distribution of both concrete and

steel is optimized and the necessary sizes of members are found. This suggests much bigger potential

for topology optimization in reinforced concrete design.

At this point it is difficult to compare the optimized designs to the state of the art reflected in build-

ing codes. Some design requirements can be easily included, e.g. clear concrete cover and minimum

reinforcement, but some post-processing is still required in order to satisfy typical building codes. Fur-

thermore, current codes are based primarily on strut-and-tie modeling, assuming a fully cracked concrete

domain at the ultimate limit state; while we perform a nonlinear FE analysis and apply only small defor-

mations for initiating damage. The main assumption in developing the current design procedure is that in
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future practice, nonlinear FE analysis will be widely accepted as a means of predicting the true response.

This will facilitate design procedures that are based on optimization and may enable the consideration of

more realistic behavior, for example accounting for the contribution of concrete in tension. In the near

future we intend to incorporate more advanced constitutive models for the concrete phase, which com-

bine plasticity with either damage (e.g. [24, 15]) or fracture (e.g. [11]). By considering a more realistic

prediction of the concrete’s response, we believe that this approach can be applied to both serviceability

as well as ultimate limit states. Another important goal of future work is extending the formulation to

deal with structures carrying their own self weight (particularly slabs), where we expect the reduction in

weight to be even more significant.

An attractive aspect of the suggested procedure is the fully digital work flow. Using CAD software,

a detailed truss ground structure can be easily defined and exported to the finite element software. Auto-

matic embedding of the truss elements is then performed, a rather straightforward operation especially if

only structured grids are used. Once the optimized topology of both concrete and rebars is found, it can

be exported back to the CAD system and then used for producing concrete molds by innovative methods,

e.g. fabric-formed; CNC milling; or CNC hotwire foam cutting. Such a computational design tool can

be very effective especially for designing complex 2-D and 3-D concrete structures.
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