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Abstract The article focuses on the reduction of the computational effort involved in robust
topology optimization procedures. The performance of structures designed by means of topology
optimization may be seriously degraded due to fabrication errors. Robust formulations of the
optimization problem were shown to yield optimized designs that are tolerant with respect to
such manufacturing uncertainties. The main drawback of such procedures is the added compu-
tational cost associated with the need to evaluate a set of designs by performing multiple finite
element analyses. In this article, we propose efficient robust topology optimization procedures
based on reanalysis techniques. The approach is demonstrated on two compliant mechanism
design problems where robust design is achieved by employing either a worst case formulation
or a stochastic formulation. It is shown that the time spent on finite element analysis within
robust topology optimization can be reduced significantly, without affecting the outcome of the
optimization process.

Keywords Topology optimization, Robust design, Manufacturing errors, Approximate reanal-
ysis

1 Introduction

Since it was introduced by Bendsøe and Kikuchi [1988], the material distribution approach
to topology optimization has emerged as an effective computational design tool with a wide
range of engineering applications (see Bendsøe and Sigmund [2003] for an overview of the theory
and applications). One of the main challenges in the development of topology optimization
is ensuring the manufacturability of the optimized designs: an optimized design might exhibit
poor performance due to errors in fabrication. Examples are MEMS devices manufactured using
etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining
and macro structures manufactured using milling processes. In these processes, fabrication of
a structural detail that is thinner or thicker compared to the optimized design may lead to
performance that is far from optimal. Therefore the consideration of manufacturing uncertainties
within the optimization process is highly desirable.

Achieving robust designs that are less sensitive to manufacturing errors was the focus of
several recent studies. Initially, Sigmund [2009] proposed a robust formulation that considers
uniform errors, meaning the fabricated product is uniformly thinner or thicker than the opti-
mized design. Such over-etching and under-etching were simulated using erosion and dilation
operators, based on density filtering [Bruns and Tortorelli, 2001; Bourdin, 2001] and projection
techniques [Guest et al., 2004; Sigmund, 2007]. The corresponding optimization problem aimed
at minimizing the objective functional for the worst of three design cases, namely the interme-
diate ‘blueprint’ design (which is to be manufactured), an over-etched (eroded) design and an
under-etched (dilated) design. Consequently, good performance was obtained for several magni-
tudes of uniform errors along the perimeter of the structure. This approach was later modified
and improved by Wang et al. [2011], where it was demonstrated that the robust formulation
can also ensure local length scale control on both solid and void regions of the intermediate
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design. Recent articles extended the robust formulation to account for random uniform man-
ufacturing errors [Lazarov et al., 2011] as well as for random spatially varying manufacturing
errors [Schevenels et al., 2011]. When considering spatial variations, the magnitude of over-
and under-etching was simulated with the help of random fields defined over the design domain.
The objective was to minimize the weighted sum of the mean performance and of the standard
deviation of the performance, while both stochastic quantities were approximated by means of
either stochastic collocation or a Monte Carlo simulation with a set of 100 random designs. We
note that topology optimization with spatially varying geometric uncertainties has also been
considered by Chen and Chen [2011] using the level-set method. Furthermore, robust topology
optimization with respect to material uncertainties has been addressed by Chen et al. [2010]
and recently by Tootkaboni et al. [2012], whereas load uncertainties were discussed by Kogiso
et al. [2008] and by Logo et al. [2009]. The focus here is on robust topology optimization proce-
dures; further references and reviews of reliability- and robust-based optimization methods can
be found in Beyer and Sendhoff [2007]; Tsompanakis et al. [2008]; Schuller and Jensen [2008].

The main drawback of robust topology optimization procedures is the added computational
cost related to the multiple finite element analyses that should be performed within every design
cycle. The number of linear systems of equilibrium equations to be solved simultaneously may
vary between 3 (for the intermediate, eroded and dilated designs in the worst case approach) to
several hundreds or thousands required for a reliable Monte Carlo simulation (in the stochastic
approach). As pointed out by Sigmund [2009] and by Wang et al. [2011], the computational
burden may be diminished by applying reanalysis techniques that avoid the costly solution of
multiple linear systems. The idea behind reanalysis procedures is to re-use a factorization of
a certain stiffness matrix in order to efficiently compute an approximation to the solution of
another linear system involving a similar stiffness matrix. The effective integration of reanalysis
techniques into robust topology optimization procedures is the main concern of this article.
The goal is essentially to reproduce the results reported by Wang et al. [2011] and Schevenels
et al. [2011] using only a single stiffness matrix factorization per design cycle. In principle, the
presented approach can easily be extended to the case of material uncertainties where again
a set of similar designs is evaluated simultaneously. However, for demonstrative purposes the
focus here is only on optimal design with geometrical variation.

We follow the Combined Approximations (CA) approach for structural reanalysis, originally
proposed by Kirsch [1991] for linear static reanalysis. Accurate results and significant savings
in computational effort have been reported; for an overview of the method and applications
the reader is referred to Kirsch [2008]. The approach has been applied successfully in various
classes of structural reanalysis problems, e.g. vibration reanalysis [Kirsch and Bogomolni, 2004],
dynamic reanalysis [Kirsch and Bogomolni, 2006] and nonlinear reanalysis [Amir et al., 2008]. In
connection with topology optimization, it was shown that CA can be utilized in the reanalysis of
truss structures undergoing topological changes, even when the structural model is altered and
the number of degrees of freedom is changed [Kirsch and Papalambros, 2001]. More recently,
Amir et al. [2009] addressed the integration of approximate reanalysis into standard topology
optimization procedures. It was shown that due to the consideration of consistent design sensi-
tivities, even rough approximations of the structural response yield optimized designs that are
practically identical to those obtained using standard procedures. Even though the main purpose
of the current study is integrating reanalysis into robust formulations, we also offer new insight
regarding the utilization of CA in topology optimization in general. Consequently, we believe
that the observations presented here lay the foundations for even more effective implementations
than those suggested by Amir et al. [2009].

The article is organized as follows. The robust topology optimization problem formulations
are reviewed in Section 2. Section 3 is the heart of the article where we present the integration
of approximate reanalysis procedures into the robust formulations. In particular, we discuss key
aspects in the implementation of CA and offer important new insight regarding the convergence
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of the reanalysis procedure. This provides a strong basis for an effective application of CA for
evaluating several similar designs. Example problems are presented in Section 4 and the accuracy
and efficiency of the proposed procedures are evaluated. Finally, the results are discussed and
conclusions are drawn in Section 5.

2 Robust formulations in topology optimization

The central feature in robust topology optimization is the consideration of a set of designs
corresponding to the optimized material distribution, as opposed to the optimization of a single
design in standard procedures. The various designs differ in a manner that mimics potential
manufacturing errors. In one approach, denoted here as the “worst case” formulation, the set of
designs is generated by applying uniform dilation and erosion operations on a certain base design.
In another approach, denoted here as the stochastic formulation, random fields are utilized for
representing spatial variations in design with respect to the base design. Both approaches and
the corresponding optimization problems are briefly reviewed in this section. For a concise
presentation, the reader is referred to the articles by Sigmund [2009] and Wang et al. [2011]
regarding the worst case formulation and to the article by Schevenels et al. [2011] discussing the
stochastic formulation.

In both approaches, the first step consists of generating the base design by applying a density
filter [Bruns and Tortorelli, 2001; Bourdin, 2001] on the mathematical design variables field ρ.
The filtered element density is given by

ρ̃e =

∑
i∈Ne

w(xi)viρi∑
i∈Ne

w(xi)vi

where Ne is the finite element’s neighborhood; w(xi) is a weighting function depending on the
distance between element e and its neighboring element i; and vi is the element’s volume. The
design sensitivities of a function f with respect to the original densities are computed by the
chain rule

∂f

∂ρe
=
∑
i∈Ne

∂f

∂ρ̃i

∂ρ̃i
∂ρe

with
∂ρ̃i
∂ρe

=
w(xe)ve∑

j∈Ni

w(xj)vj

where w(xe) is the weight of element e in the neighborhood of element i. In the second step, a
parameterized projection function [Xu et al., 2010] is utilized. All filtered densities ρ̃i below a
threshold value η are projected to 0 while all densities above the threshold are projected to 1.
The projection is determined by the function

ρ̃i =


η
[
e−β(1−ρ̃i/η) − (1− ρ̃i/η)e−β

]
0 ≤ ρ̃i ≤ η

(1− η)
[
1− e−β(ρ̃i−η)/(1−η)+

(ρ̃i − η)/(1− η)e−β
]

+ η η < ρ̃i ≤ 1

(1)

where the parameter β governs the curvature of the smooth projection: the higher the value of β,
the closer the function (1) is to the Heaviside step function. In practice, a continuation scheme is
applied, raising β gradually from 1 to 32. Another appropriate (and simpler) projection function
was proposed by Wang et al. [2011]

ρ̃i =
tanh(βη) + tanh(β(ρ̃i − η))

tanh(βη) + tanh(β(1− η))
(2)
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In the worst case approach, the set of designs corresponds to uniform distributions of various
predetermined thresholds η. In particular, we consider the case of three designs: a dilated
structure (η = ηmin), an intermediate structure (η = ηmin+ηmax

2 ) and an eroded structure (η =
ηmax). In the stochastic approach, a large set of designs is generated according to random spatial
distributions of the threshold η within a prescribed range, meaning ηmin ≤ η ≤ ηmax.

2.1 Worst case formulation

As a representative design problem we consider the optimization of a compliant force inverter,
see Figure 1(a). The objective is to maximize a certain output displacement at the negative
global direction. In a standard formulation, the objective function is expressed as f = lTu
where the vector l has an entry equal to 1 at the output displacement degree of freedom and
zeros otherwise. For achieving a manufacturing-tolerant design, the optimization problem is
formulated as a worst case design problem

min
ρ

max(lTud, lTui, lTue)

s.t.:

N∑
e=1

veρ̃
d
e ≤ V ?

d

0 ≤ ρe ≤ 1 e = 1, ..., N

with: K(ρ̃
d
)ud = f

K(ρ̃
i
)ui = f

K(ρ̃
e
)ue = f (3)

where ρ̃
d
, ρ̃

i
and ρ̃

e
are the dilated, intermediate and eroded material distributions respec-

tively; the corresponding stiffness matrices and displacements are
{
K(ρ̃

d
),K(ρ̃

i
),K(ρ̃

e
)
}

and{
ud,ui,ue

}
; and V ?

d is the maximum allowed volume, imposed as a constraint on the dilated
structure. The sensitivity of the function f = lTu with respect to a certain projected density
distribution is calculated by the adjoint method. First an adjoint system is solved

K(ρ̃)λ = l (4)

and then the sensitivity with respect to a projected element density is

∂f

∂ρ̃e
= −λT ∂K

∂ρ̃e
u (5)

This is repeated for all three projections with the appropriate stiffnesses and displacements.
Finally, the sensitivity with respect to the original density variables is obtained by the chain
rule

∂f

∂ρe
=
∑
i∈Ne

∂f

∂ρ̃i

∂ρ̃i
∂ρ̃i

∂ρ̃i
∂ρe

(6)

The same chain rule is applied to compute the sensitivities of the volume constraint with respect
to the original density variables.

2.2 Stochastic formulation

We focus on the optimization of a gripper mechanism (see Figure 1(b)) as an example design
problem to illustrate the stochastic formulation. The stochastic formulation considers spatially
varying manufacturing errors [Schevenels et al., 2011]. The projection threshold is modeled as
a random field η(x, θ), where x is the position in space and θ is the coordinate in the random
dimension [Doob, 1953; Kolmogorov, 1956].
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On projection methods, convergence and robust formulations in topology optimization

Sketches of the considered test examples are shown in
Fig. 2. The first example considers a compliant inverter
design problem drawn in Fig. 2a which was defined as
a benchmark example for filtering schemes in Sigmund
(2007). The objective is to maximize the displacement uout

in the negative direction, for applied force fin = 1 and

(a)

(b)

(c)

Fig. 2 a Design domain and boundary conditions for the compliant
mechanism inverter. b Design domain and boundary conditions for the
heat conduction problem. c Design domain and boundary conditions
for the compliant mechanism gripper

spring stiffness coefficients kin = 1 and kout = 0.001.
The volume fraction is V ∗ = 0.3, and Young’s moduli for
the solid and the void phases are E0 = 1.0 and Emin =
10−9, respectively. The second example is a heat conduc-
tion problem, where the objective is to transfer effectively
heat generated in the design domain. The objective can be
written as f (ρ) = fTu. The conductivity of the solid is set
to E0 = 1, and the minimum conductivity for the void phase
is Emin = 10−3. The loading is a distributed unit thermal
load. The third example considers compliant gripper design,
where the objective is to maximize the displacement uout

for applied force fin = 1, and spring stiffness coefficients
kin = 1 and kout = 0.005. The mechanical properties
and the volume fraction are the same as for the compliant
inverter. The penalization parameter in (2) is taken to be
p = 3 for all of the presented examples.

3 Filtering

Setting the physical density in (1) to be equal to the design
variable, i.e. ¯̃ρi = ρi , leads to a mesh dependent solu-
tion. Instead of obtaining a better description of the design
by refining the finite element mesh, the topology optimiza-
tion process might add thin details (small solid or void
regions), comparable with the mesh size, and might con-
verge to a design with completely different topology. Hence,
the length scale in the obtained design becomes depen-
dent on mesh size. Furthermore, for low order element dis-
cretization the design might suffer from the well known
checkerboard pathology (Díaz and Sigmund 1995; Jog and
Haber 1996). In order to avoid these problems the origi-
nal design problem (1) needs to be regularized. Various
techniques have been proposed in the literature (Bendsøe
and Sigmund 2004; Sigmund and Petersson 1998). Here
the mesh independent density filtering (Bruns and Tortorelli
2001; Bourdin 2001) is used as a basis to ensure existence
of solutions. The main idea is to define the physical ele-
ment density to be a weighted average of the neighboring
design variables, where the neighborhood is defined by a
circle in 2D or sphere in 3D with specified radius. Applying
regularization to the original problem leads to gray transi-
tion regions with intermediate densities between 0 and 1. In
many problems (e.g. compliance problems) the transition
regions are not important and a simple contour plot will
provide good interpretations for a final solid/void design.
However, for problems with more complex physics and/or
objective functions (like electrostatic actuators or compli-
ant mechanisms) practical realizations of these designs are
difficult and may provide wrong physical interpretations.
Hence, projection techniques which project the filtered
designs into 0/1 space have recently been proposed in the
literature, e.g. Guest et al. (2004), Sigmund (2007), Xu et al.

(a) Compliant force inverter [Wang et al., 2011].

L

0.25L

0.05L

0.40L

0.05L

0.25L

0.20L

fin

kin

uout1

kout

kout
uout2

L

0.01L

0.01L

Figure 1: Design domain and boundary conditions for the compliant gripper mechanism.

(a) Design variables ρ. (b) Filtered variables ρ̃(ρ). (c) Element densities ¯̃ρ(ρ̃|η).

Figure 2: Optimized design for a compliant gripper mechanism obtained with a deterministic
approach.

While the application of the density filter introduces a length scale in the
design, this length scale is not preserved by the Heaviside projection: very
narrow hinges occur between different parts of the mechanism. As explained by
Wang et al. [34], this is caused by the use of a projection threshold β different
from 0 or 1. Due to these hinges, the design is very sensitive to manufacturing
errors, as they may cause the parts of the mechanism to disconnect in the case
of over-etching.

2.4. Heat sink design

Figure 3 shows the design domain and boundary conditions for the heat sink.
The heat generation load is an evenly distributed unit load, and the objective
is to maximize the heat transfer. The width and height of the design domain is

7

(b) Gripper mechanism [Schevenels et al., 2011].

Figure 1: Design domain, boundary conditions and loads for the two
example problems.
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A detailed description of the procedure to simulate the random field η(x, θ) can be found in
[Schevenels et al., 2011]. Essentially, a two-step procedure is followed. First, a realization of a
Gaussian field ζ(x, θ) is generated as follows:

ζ(x, θ) =

M∑
k=1

ξk(θ)φk(x) (7)

i.e. the random field is expressed as a linear combination of deterministic basis functions φk(x)
with random coefficients ξk(θ). The basis functions φk(x) depend on the field’s covariance
function and can be determined by means of the Karhunen-Loève method [Ghanem and Spanos,
1991] or the Expansion Optimal Linear Estimation (EOLE) method [Li and Der Kiureghian,
1993]. A squared exponential covariance function with a correlation length lc = 0.3L is assumed
here, where L is the size of the design domain (see Figure 1(b)). The random coefficients ξk(θ)
in equation (7) are independent standard Gaussian variables; they can be simulated by means
of a random number generator.

Second, the following transformation is applied:

η(x, θ) = γ
(
ζ(x, θ)

)
where γ is a nonlinear mapping that translates a realization of the Gaussian field ζ(x, θ) to
a realization of a field with the target marginal probability distribution. A uniform marginal
probability distribution between 0.4 and 0.6 is used in the present study.

The random character of the projection threshold η(x, θ) is controlled entirely by the random
variables ξk(θ). The element densities obtained by projecting the filtered design variables using
the random projection threshold η(x, θ) can therefore be denoted as ¯̃ρ(ρ, ξ), where ξ is a vector
collecting the random variables ξk(θ). Figure 2 shows eight realizations of the element densities
¯̃ρ(ρ, ξ) obtained for eight different realizations of the projection threshold η(x, θ). The effect of
an erosion/dilation manufacturing error varying in space can be observed.

Figure 2: Examples of realizations of spatially varying manufacturing
errors in compliant gripper fabrication, generated using a random field.

The objective of the gripper design problem is to maximize the gripping displacements uout1
and uout2, meaning minimize f = uout2−uout1. In a standard formulation, this objective function
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is again expressed as f = lTu where the vector l has the entries −1 and 1 at the “out1” and
“out2” degrees of freedom respectively, and zeros otherwise. In the robust formulation, the
aim is to minimize a weighted sum of the mean performance and the standard deviation of the
performance

min
ρ

mf (ρ) + wσf (ρ)

s.t.: mV (ρ) ≤ V ?

0 ≤ ρe ≤ 1 e = 1, ..., N

with: K(ρ, ξ)u(ρ, ξ) = f (8)

where mf (ρ) and σf (ρ) are the mean value and the standard deviation of the performance
f = lTu

mf (ρ) = E {f(ρ, ξ(θ))}

σf (ρ) =

√
E
{

[f(ρ, ξ(θ))]2
}
− [E {f(ρ, ξ(θ))}]2

The weighting factor w is set to 1 in the present study. For each random design, the volume is
computed based on the projected densities

V =

N∑
e=1

veρ̃e (9)

Then the volume constraint is imposed on the mean value of all the random designs

mV (ρ) = E {V (ρ, ξ(θ))}

The mean volume is constrained to be lower than or equal to a prescribed value V ?. The
derivatives of the objective and constraints with respect to a certain design variable ρe are
obtained by differentiation of the expressions for the mean and standard deviation

∂mf

∂ρe
= E

{
∂f

∂ρe

}
∂σf
∂ρe

=
1

σf

(
E
{
f
∂f

∂ρe

}
−mf

∂mf

∂ρe

)
∂mV

∂ρe
= E

{
∂V

∂ρe

}
The derivatives ∂f

∂ρe
are computed by the adjoint method for every random projected density

distribution and then translated to the design variables space using the chain rule, just like in
Eqs. (4), (5) and (6). The derivatives ∂V

∂ρe
for each of the designs are obtained by differentiating

(9) and applying the chain rule (6).

3 A reanalysis approach to robust formulations in topology op-
timization

For the purpose of obtaining an approximate response of numerous similar designs considered
at each optimization cycle, we apply Kirsch’s Combined Approximations (CA) approach for
structural reanalysis [Kirsch, 1991, 2008]. Originally, CA was introduced as a reduced basis
method, where the basis vectors correspond to a truncated series expansion. Later, Kirsch et al.
[2002] showed that CA can also be seen as a particular case of the Preconditioned Conjugate
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Gradient (PCG) method. In this section, we first review the formulation of CA and demonstrate
the advantages of implementing it as a PCG rather than in the original manner. Then, we
present a consistent sensitivity analysis procedure that accounts for an approximation in the
solution of the analysis equations. This is followed by a study focusing on the convergence of
the reanalysis procedure, offering new insight which is crucial for effectively applying CA when
multiple structures are to be evaluated simultaneously.

3.1 Kirsch’s Combined Approximations as a PCG procedure

In every topology optimization design cycle, the linear system of finite element equilibrium
equations to be solved is

Ku = f (10)

where K is the stiffness matrix, u is the unknown displacements vector and f is the external
forces vector. Instead of solving the full system of equations, it is possible to efficiently find an
approximation ũ that will be sufficiently accurate for the purpose of optimization

ũ ≈ u

Kũ ≈ f

In the Combined Approximations approach, the displacements are first expressed as an infinite
series

u = (I−K−1
0 ∆K + (−K−1

0 ∆K)2 + (−K−1
0 ∆K)3 + ...)u1 (11)

where K0 is a “reference” stiffness matrix given in its factorized form, ∆K = K − K0 and
K0u1 = f . The main feature of CA is the utilization of only a few series terms from (11) as basis
vectors in a reduced basis solution. Considering only the first s series terms, the approximation
of the displacements is expressed as

ũ = y1u1 + y2u2 + ...+ ysus = RBy

where RB is an n × s matrix containing the basis vectors u1,u2, ...,us and y is a vector of s
unknowns. Replacing u in (10) with ũ and premultiplying both sides by RT

B gives the reduced
system of equations

RT
BKRBy = RT

Bf (12)

In practical implementation, the basis vectors are generated sequentially using the relation

K0ui = −∆Kui−1

This requires one matrix-vector multiplication and one triangular solve using the factors of
K0. For computing the reduced stiffness matrix, s additional matrix-vector multiplications are
needed. In many cases it is beneficial to orthonormalize the basis vectors using a Gram-Schmidt
procedure, because the reduced matrix RT

BKRB tends to become ill-conditioned when more
than only a few basis vectors are used. In the context of CA procedures, this was originally
proposed by Leu and Huang [1998]. The accuracy of the approximation is then improved when
a rather large basis is utilized, but for the extra cost of orthogonalization.

It was shown [Kirsch et al., 2002] that the CA procedure is mathematically equivalent to a
PCG procedure where the factors of K0 serve as preconditioners. Assuming positive definiteness
of both K0 and K, the Cholesky factorization UT

0 U0 = K0 is used to precondition the system of
equations (10). In other words, the iterative Conjugate Gradient method [Hestenes and Stiefel,
1952] is applied to solve the preconditioned system

(U−T0 KU−1
0 )(U0u) = U−T0 f
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The equivalence of CA and PCG enables to re-cast the reanalysis problem as a PCG procedure,
aimed at computing an approximation ũ using only a small number of PCG iterations. In
the context of topology optimization, such a procedure was recently implemented by Amir and
Sigmund [2011], using only one matrix factorization for the whole design process. One advantage
of re-casting the reanalysis problem as a PCG is the computational efficiency: each PCG iteration
requires one matrix-vector multiplication and one triangular solve, so it is slightly cheaper than
the original CA procedures. Another advantage lies in the superior numerical robustness of
PCG, which is demonstrated in the following example.

Comparing numerical robustness: standard CA approach vs. PCG We consider the
compliance minimization of the well-known MBB-beam, see for example Bendsøe and Sigmund
[2003]. The focus is on the structural reanalysis corresponding to the 10th design cycle. The
FE mesh consists of 60× 20 square bi-linear elements; the allowed volume fraction is 50%; the
SIMP penalty factor is 3.0; and the filter radius is 1.5. The reference stiffness matrix given in
factorized form corresponds to an entirely solid domain, as in Amir and Sigmund [2011]. The
approximation ũ corresponding to the previous design cycle is used as an initial guess for the
current reanalysis.

The approximation ũ is computed using four different schemes: 1) Standard CA; 2) CA with
an orthonormal basis; 3) PCG with the factors of the reference matrix as preconditioners; 4) CA
with an orthonormal basis, and assuming exact orthonormality. The difference between schemes
2) and 4) is that if exact orthonormality is achieved, then a simple expression can be used for
computing the contribution of each added basis vector. Otherwise a small system of equations in
the form of (12) should be solved every time another basis vector is added. In the CA procedures,
we use up to 30 basis vectors which are equivalent to 30 PCG iterations. For each number of
PCG iterations / basis size, we evaluate the accuracy of the approximation by measuring the

relative norm of residual forces
‖f−Kũ‖2
‖f‖2

. The results are depicted in Figure 3. It can be seen,

that with up to 10 PCG iterations / basis vectors, the approximations computed using the four
schemes are exactly the same. Then, the accuracy of the standard CA procedure deteriorates
due to ill-conditioning of the reduced stiffness matrix. The orthonormal basis yields results that
are close to those obtained by PCG, but it should be mentioned that the orthogonalization
is not precise once the size of the basis exceeds 16 basis vectors, presumably due to round-off
errors. For this reason, the solution assuming orthonormality diverges from this point. It is
therefore concluded that it is beneficial to re-cast Kirsch’s Combined Approximations approach
as a PCG. This provides superior computational robustness, as well as improved efficiency and
ease of implementation. Accordingly, throughout the remainder of this article we refer mainly
to the PCG formulation of the reanalysis problem, which is also the one we implemented for the
purpose of this study.

3.2 Sensitivity analysis for approximate reanalysis

In conventional topology optimization procedures following the nested approach, it is assumed
that the analysis equations are solved accurately. Then, the adjoint method is utilized to com-
pute design sensitivities efficiently, for the objective functional and for each of the constraints.
When approximate reanalysis is performed, the analysis equations are not necessarily solved
accurately so the standard adjoint approach is not applicable in general. In order to overcome
this difficulty, it is necessary either to accept a certain error in the design sensitivities or to
perform the sensitivity analysis in a manner that is consistent with approximate reanalysis.

This study addresses the robust design of compliant mechanisms. The objective is to mini-
mize a certain performance measure which is related directly to the displacements. As described
above, this is typically expressed as f = lTu, where the vector l consists of the values 1 or −1
at the relevant degrees of freedom and zeros otherwise. In standard procedures, the adjoint
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Figure 3: Comparing the accuracy of four implementations of the re-
analysis procedure.

equation system to be solved is
Kλ = l (13)

and then the sensitivity of the objective with respect to an element density is

∂f

∂ρe
= −λT ∂K

∂ρe
u

Approximate sensitivity analysis One possible approach is to view also the adjoint equa-
tion system (13) as a reanalysis problem. This means that for each design to be evaluated,
we solve two reanalysis problems simultaneously. In the PCG framework this is conveniently
performed using a block-PCG procedure [O’Leary, 1980]. Two approximations are obtained for
every design: ũ and λ̃ corresponding to the displacements and to the adjoint variables. The
error associated with these approximations is ignored and approximate design sensitivities are
computed by

∂f

∂ρe
= −λ̃T ∂K

∂ρe
ũ (14)

This approach led to very good results in previous studies [Amir et al., 2010; Amir and Sigmund,
2011] and is also applicable for the robust formulation, as shown in Section 4. However, it lacks
mathematical consistency and may fail when aiming to reduce the number of PCG iterations.
In particular, it is observed that the errors in the solution of the adjoint system (in terms of
relative residual forces) are larger than the errors corresponding to the solution of the structural
analysis equations, by one to two orders of magnitude. This is due to the ground structure’s
aspect ratio and to the location of loads and supports, and was also observed in the study by
Amir et al. [2010].

Consistent sensitivity analysis A more rigorous approach involves the derivation of design
sensitivities that are consistent with the approximation resulting from the reanalysis procedure.
In the context of utilizing Kirsch’s Combined Approximations in topology optimization, con-
sistent sensitivity analysis was first introduced by Amir et al. [2009]. The approach was later
generalized in Amir et al. [2010] for approximations obtained by forcing early termination of
PCG when it is applied as a standard iterative equation solver. The main idea is that when
applying the adjoint method for sensitivity analysis, the complete iterative procedure performed
in order to obtain the approximation is taken into account. Then the design sensitivities are
accurate and consistent with respect to the approximate representation of the problem.
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For a clear presentation of the consistent adjoint procedure, we first review the PCG proce-
dure applied. Aiming to solve the linear system Ku = f with the preconditioner K0 = UT

0 U0,
the procedure can be outlined as follows

1. Set the initial guess u1.

2. Compute the initial residual r1 and direction vector p1: r1 = f − Ku1, z1 = K−1
0 r1,

p1 = z1.

3. For i = 1:maxiter do

(a) αi =
rTi zi

(Kpi)Tpi

(b) ui+1 = ui + αipi

(c) ri+1 = ri − αiKpi

(d) If ‖ri+1‖2 < ε ‖f‖2 break.

(e) zi+1 = K−1
0 ri+1.

(f) βi =
rTi+1zi+1

rTi zi

(g) pi+1 = zi+1 + βipi

In the current application, PCG will be terminated after a small number of iterations denoted
m − 1. At this point, we obtain an iterate um that did not necessarily converge to satisfy
equilibrium, meaning

‖f −Kum‖2
‖f‖2

=
‖rm‖2
‖f‖2

> ε

Following the adjoint method, all the expressions involved in computing the PCG variables
throughout the iterative procedure (until the termination step) should be multiplied by a corre-
sponding adjoint variable and added to the objective function. Then the augmented objective
functional for compliant mechanism design will have the form

ĉ(ρ) = lTum + r̃1
T (r1 − f + Ku1) + z̃1

T (K0z1 − r1) +

p̃T1 (p1 − z1) +
m−1∑
i=1

α̃i(αi −
rTi zi

(Kpi)Tpi
) +

m∑
i=2

ũTi (ui − ui−1 − αi−1pi−1) +
m∑
i=2

r̃Ti (ri − ri−1 +

αi−1Kpi−1) +

m−1∑
i=2

z̃Ti (K0zi − ri) +

m−2∑
i=1

β̃i(βi −
rTi+1zi+1

rTi zi
) +

m−1∑
i=2

p̃Ti (pi − zi − βi−1pi−1)

When differentiating the augmented objective functional we wish to remain with explicit deriva-
tives of the stiffness matrix and of the preconditioner only. For that purpose, we solve a set of
adjoint equations that eliminates all other derivatives. The complete set of adjoint equations to
be solved is presented in Amir et al. [2010], with only a minor difference due to the fact that it
is derived there for a minimum compliance objective. We note that this approach leads to an
iterative CG-like adjoint procedure that is performed in a reverse manner, beginning in the m-th
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cycle and ending in the first cycle. After performing the complete adjoint procedure, the design
sensitivities include only explicit derivatives of the stiffness matrix and of the preconditioner
that can be computed efficiently on an element level

∂ĉ

∂ρe
= r̃1

T ∂K

∂ρe
u1 +

m−1∑
i=1

α̃ir
T
i zi

((Kpi)Tpi)2
pTi

∂K

∂ρe
pi +

m∑
i=2

αi−1r̃
T
i

∂K

∂ρe
pi−1 +

m−1∑
i=1

z̃Ti
∂K0

∂ρe
zi (15)

In summary, one approach is to keep the original formulation of the optimization problem
that assumes an accurate solution of the nested analysis equations, and then use approximate
design sensitivities. Another approach is to consider a slightly modified optimization problem
that does not assume accurate solution of the nested equations and use consistent design sen-
sitivities. In the following, the corresponding computational procedures are denoted ‘variant 1’
and ‘variant 2’ respectively. Clearly, implementing variant 2 makes more sense from a mathe-
matical point of view but as shown in Section 4, this is not necessarily reflected in the numerical
results.

3.3 Choosing the reference design

A successful application of approximate reanalysis in optimal design relies to a large extent on the
choice of the reference stiffness matrix K0. In the case of the robust formulations, it is suggested
to use the most dilated structure (within the considered range of dilation/erosion) as a reference
structure. This holds also for the stochastic case where the uniformly dilated structure is not part
of the set of designs to be considered in the optimization. Several arguments that support this
particular choice are given in this section. The arguments are based on basic properties of the
Combined Approximations approach as well as on observations arising in numerical experiments.

Convergence of the reanalysis series First we take a close look at the convergence of the
series (11). Denoting B ≡ −K−1

0 ∆K, the series converges if and only if [Wilkinson, 1965; Kirsch,
2008]

lim
k→∞

Bk = 0

which in turn holds if and only if [Saad, 2003]

ρ(B) < 1.

The spectral radius is related to a consistent matrix norm of B by the inequality [Saad, 2003]

ρ(B) ≤ ‖B‖

meaning that a sufficient condition for convergence of the series is [Kirsch, 2008]

‖B‖ < 1. (16)

Evaluating the errors involved in truncation of the series, the norm of the sum of additional
terms beyond the first s terms ∆u = Bs(I + B + B2 + B3 + ...)u1 is bounded from above by

‖∆u‖ =

∥∥∥∥∥Bs

( ∞∑
k=0

Bk

)
u1

∥∥∥∥∥ ≤ ‖Bs‖

∥∥∥∥∥
( ∞∑
k=0

Bk

)
u1

∥∥∥∥∥ ≤ (17)

‖Bs‖

∥∥∥∥∥
∞∑
k=0

Bk

∥∥∥∥∥ ‖u1‖ ≤ ‖B‖s
1

1− ‖B‖
‖u1‖

where we used properties of consistent matrix norms as well as the relations
∑∞

k=0 B
k = (I−B)−1

and
∥∥(I−B)−1

∥∥ ≤ 1
1−‖B‖ [Golub and Van Loan, 1996].
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Relating the choice of K0 to convergence and errors In robust topology optimization
a (potentially large) set of designs is evaluted simultaneously. Applying reanalysis techniques
immediately raises the question of how to choose the reference design corresponding to K0 so that
the most effective procedure is obtained. Throughout this section, we focus on a demonstrative
scenario where two designs are to be evaluated. The main argument is that it is more effective
to use the “stiffer” one as the reference design rather than vice-versa.

We first examine the impact on the condition (16) which can be elaborated as

‖B‖ =
∥∥−K−1

0 ∆K
∥∥ < 1.

We denote the stiffnesses of the two designs K1 and K2 and assume K1 is the “stiffer” design
meaning K1 � K2. K1 is chosen as the reference design so ∆K = K2−K1 and K1−K2 +∆K =

0. Multiplying on both sides by K
−1/2
1 gives

I−K
−1/2
1 K2K

−1/2
1 + K

−1/2
1 ∆KK

−1/2
1 = 0.

The matrix K
−1/2
1 K2K

−1/2
1 is positive-definite because both K

−1/2
1 and K2 are positive-definite.

Therefore
I + K

−1/2
1 ∆KK

−1/2
1 � 0

or alternatively

I � −K−1/2
1 ∆KK

−1/2
1 .

On both sides of the inequality we have positive-definite matrices (because −∆K is positive-
definite) so it follows that for the matrix 2-norm (which is the spectral radius for Hermitian
matrices [Saad, 2003]) we have

‖I‖2 >
∥∥∥−K−1/2

1 ∆KK
−1/2
1

∥∥∥
2

and using the relation
∥∥∥−K−1/2

1 ∆KK
−1/2
1

∥∥∥
2

=
∥∥−K−1

1 ∆K
∥∥

2
(e.g. [Chen, 2005]) we obtain∥∥−K−1

1 ∆K
∥∥

2
< 1. (18)

This means that convergence is guaranteed if K1 plays the role of the reference design, regardless
of the magnitude of the differences in stiffness ∆K. An important consequence of (18) is that in
design scenarios involving more than two structures, choosing the “stiffest” one as the reference
design is a very effective choice because convergence is guaranteed for all evaluations of the other
structures.

If K2 would have been chosen as the reference design, convergence could still be achieved
but with dependence on the magnitude of ∆K. However, it is expected to be slower. The
convergence rates for the choices of K1 or K2 as the reference design are related to

∥∥−K−1
1 ∆K

∥∥
and

∥∥K−1
2 ∆K

∥∥ respectively. The former is smaller because
∥∥K−1

1

∥∥ is smaller than
∥∥K−1

2

∥∥.
Let us now demonstrate the arguments given above on a single degree of freedom equilibrium

equation ku = f , where k is the stiffness, u is the displacement and f is the force. We consider
the case of three available designs k ∈ {8, 10, 12} and the aim is to compare the convergence
of the reanalysis series for three scenarios, each involving a pair of designs. The approximate
displacements computed using 10 series terms with various choices of k and k0 are plotted in
Fig. 4(a). The relative absolute errors |uexact−us|uexact

are plotted in Fig. 4(b). It can be seen that for
stiffer reference designs (∆k < 0) the approximations approach the exact solution monotonously
from below, while for softer reference designs (∆k > 0) fluctuations are observed. As expected,
the convergence rates of the various series approximations are in complete correlation with the
values of the ratio |∆k||k0| : the higher this ratio, the slower convergence is achieved. But the most
important observation for the current application is the following: for evaluating any pair of
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(b) Relative absolute errors of the approximation
with up to 10 series terms. Convergence for k = 12,
k0 = 10 coincides with k = 8, k0 = 10 because the
ratios |∆k|

k0
are the same.

Figure 4: Convergence of the reanalysis series in single degree of free-
dom problems. For any pair of designs, if the reference design and the
re-analyzed design obey k0 > k then convergence is faster compared to
the case k0 < k.

designs, it is better to let the stiffer one play the role of k0 because then the ratio |∆k||k0| is smaller,
meaning convergence is faster. This will be further demonstrated in the following section, where
a model problem of robust topology optimization is addressed.

Examining the bound (17), it can be seen that the truncation errors are reduced as ‖B‖
and ‖u1‖ are reduced. Focusing again on the scenario involving two designs K1 and K2 with
K1 � K2, ‖B‖ will be smaller if K1 plays the role of the reference design K0. Furthermore,
the first series term ‖u1‖ will also be smaller because the force vector is the same, giving∥∥K−1

1 f
∥∥ < ∥∥K−1

2 f
∥∥.

An important question arising is how to identify a “stiffer” design corresponding to a smaller∥∥K−1
0

∥∥. In the context of the current application, all the designs are generated from the same
“base” design (resulting from density filtering only) by either adding or removing linear elastic
material. In the worst-case formulation, uniform dilation will result in a larger ‖K‖ and smaller∥∥K−1

∥∥ compared to the base design as well as compared to the intermediate design. Erosion
will result in a smaller ‖K‖ and larger

∥∥K−1
∥∥ compared to the base and intermediate designs.

Therefore the dilated structure is the stiffest design available in the worst-case scenario.
In the stochastic formulation, material is added or removed according to the random dis-

tribution of the parameter η. Therefore it is difficult to classify which designs correspond to
larger/smaller norms. However, it is clear that the uniformly dilated design has more added
material than all the randomly generated designs - the dilation envelopes all other designs.
Therefore it corresponds to a larger ‖K‖ and a smaller

∥∥K−1
∥∥ compared to the complete set of

designs to be evaluated and can be identified as the stiffest design in the stochastic scenario as
well. Choosing the stiffest design as K0 in the stochastic scenario is not necessarily the most
efficient choice for some evaluations. Actually, the average magnitude of ∆K is expected to
be smaller if the intermediate (blueprint) design is used as reference. On the other hand, the
value of ‖B‖ depends both on

∥∥K−1
0

∥∥ as well as on ‖∆K‖ so it is difficult to predict which
reference design will eventually lead to the fastest convergence when the whole set of designs is
considered. The limitation of using the intermediate design as reference is that convergence is

14



not guaranteed when the evaluated design is stiffer, while using the stiffest design as reference
ensures convergence for all designs. Furthermore, as will be shown in the following section, large
errors are exhibited when evaluating a design that is stiffer than the reference. Therefore we
conclude that using the stiffest design as reference gives a robust and effective procedure also in
the framework of the stochastic approach.

Behavior of the PCG procedure The examination will now be extended to an actual case
of robust topology optimization, where multiple structures are considered simultaneously. We
focus on the convergence of the reanalysis procedure when it is formulated as a PCG, for different
choices of the reference design. At this point it should be noted that the series terms from Eq.
(11) are identical to the vectors in the Krylov subspace when the factors of K0 are employed as
preconditioners [Kirsch et al., 2002]. In practice, convergence of the PCG (or CA) procedure is
influenced by other parameters besides the quantity ‖B‖; in some cases convergence is achieved
even if ‖B‖ is large [Kirsch, 2008]. This is because the approximation is not computed directly
from the series (11) but rather from a reduced basis solution. Nevertheless, it will be shown that
the behavior of the PCG/CA is procedure is essentially the same as that of the single degree of
freedom system, where reanalysis was based solely on the series terms.

The test case considers uniform manufacturing errors represented by dilation and erosion
operators and the problem formulation is given in (3). Five designs are considered, corresponding
to different deterministic values of the parameter η that governs the dilation/erosion via the
projection functions (1) or (2). For the purpose of a qualitative investigation, a “snapshot” of
the design process is taken after 200 cycles, see Figure 5. The linear systems are numbered from
1 to 5, the former corresponding to the most dilated structure (η = 0.3, Figure 5(b)) and the
latter corresponding to the most eroded structure (η = 0.7, Figure 5(f)). We attempt to solve
all five linear systems with all available factorizations as preconditioners, meaning four PCG
procedures for each linear system. The convergence tolerance in terms of the relative residual
norm is set to 1e− 10 and the maximum number of PCG iterations is set to 1000. The number
of iterations required for convergence is given in Table 1 where 1000 means that PCG did not
converge to the required tolerance. The convergence rate of PCG is often related to the condition
number of the preconditioned system, so these are given in Table 2.

Table 1: PCG iterations

Reanalysed design

Reference design #1, η = 0.3 #2, η = 0.4 #3, η = 0.5 #4, η = 0.6 #5, η = 0.7

#1, η = 0.3 66 435 1000 1000

#2, η = 0.4 95 64 435 1000

#3, η = 0.5 783 95 63 432

#4, η = 0.6 1000 779 91 62

#5, η = 0.7 1000 1000 718 93

Table 2: Condition numbers

Reanalysed design

Reference design #1, η = 0.3 #2, η = 0.4 #3, η = 0.5 #4, η = 0.6 #5, η = 0.7

#1, η = 0.3 4.39e2 5.69e4 5.79e6 1.84e8

#2, η = 0.4 7.87e2 4.17e2 5.22e4 4.87e6

#3, η = 0.5 1.24e5 8.11e2 4.01e2 5.60e4

#4, η = 0.6 1.00e7 8.61e4 7.11e2 4.49e2

#5, η = 0.7 2.49e8 8.53e6 1.06e5 7.60e2

Several immediate observations arise when examining Tables 1 and 2. First, for differences
in η larger than 0.1, the condition numbers are relatively high and the PCG procedures appear
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(a) (b) (c)

(d) (e) (f)

Figure 5: Example involving the robust design of a force inverter,
demonstrating the choice of the reference design. Uniform errors are
considered in the from of dilation / erosion operations. The figures
represent the following data sets after 200 design cycles: (a) Design
variables; (b) Most dilated structure, η = 0.3; (c) Mildly dilated struc-
ture, η = 0.4; (d) Intermediate structure, η = 0.5; (d) Mildly eroded
structure, η = 0.6; (f) Most eroded structure, η = 0.7.

to converge very slowly. Second, for any given difference in η, it seems to be beneficial to use
the stiffer structure as the preconditioner: in both tables the upper triangle terms represent a
better performance than the lower triangle terms. However, the differences are not dramatic
and by no means support the choice of the stiffest structure (system 1) as the reference design.
In fact, if a decision were to be taken according to the information in Tables 1 and 2, the most
sensible choice would be to use the intermediate structure (system 3) as the reference design.

A closer look at the short-term convergence of the PCG solutions leads to a different con-
clusion which is perfectly compatible with the conclusions arising from the examination of the
single degree-of-freedom system. The following examination is limited to the first 50 PCG itera-
tions performed when solving systems 1, 3 and 5 with the preconditioners chosen from the same
systems. The exclusion of systems 2 and 4 from the discussion is for demonstrative purposes
only and it is noted that the same behavior was observed also when considering the full set of
systems. We focus on the short-term behavior because the aim is to perform very few PCG iter-
ations for each reanalysis problem; otherwise a factorization is more efficient. The convergence
is measured using two different quantities: 1) The relative norm of residual forces; 2) The error
(compared to the exact solution) in the value of the quadratic functional φ = 1

2u
TKu − fTu,

which is the quantity that is minimized by PCG.
Examining the results plotted in Figure 6, it is clearly beneficial to use a stiffer structure as

the reference design: the short-term reduction in errors is significantly better than when using a
preconditioner corresponding to a design that is more flexible than the design to be evaluated.
Moreover, the short-term performance is better with a stiff preconditioner even if the difference
in stiffness ∆K is large. For example, when solving system 5 with the factors of system 1 as
preconditioners, the errors decrease rapidly; whereas when solving system 3 with the factors
of system 5 as preconditioners, the errors decrease slowly over the first 50 iterations. This is
despite the better condition number of the latter procedure.

In conclusion, we argue that the most dilated structure should be used as the reference
design for reanalysis within both robust formulations discussed in this article. Furthermore, the
numerical evidence presented in this section also explains the relatively good performance of the
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(b) Relative error in the PCG functional φ.

Figure 6: Convergence of the reanalysis / PCG procedure with different
factorizations as preconditioners.
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procedure described in Amir and Sigmund [2011], where a solid domain is used as the reference
design for the whole design process in standard topology optimization.

3.4 Implementation in robust formulations

The computational procedures for robust topology optimization based on approximate reanalysis
are hereby outlined. We address two approaches to robust design: the worst case formulation
and the stochastic formulation. The formulation of the optimization problems is the same as
presented in (3) and (8), except for the introduction of approximations in the solution of the
nested analysis equations. In the worst case approach we consider

K(ρ̃
d
)ud = f

K(ρ̃
i
)ui ≈ f

K(ρ̃
e
)ue ≈ f

meaning that the analysis of the dilated structure is accurate while the analyses of the interme-
diate and eroded structures are approximate. In the stochastic approach, a uniformly dilated
structure does not belong to the set of designs to be evaluated; it is generated only to serve as
a “reference design” for reanalysis. Therefore the nested problem has the form

K(ρ, ξ)u(ρ, ξ) ≈ f

meaning that approximate reanalysis is performed for all the randomly generated designs. Into
each of these approaches we integrate two variants of approximate reanalysis. In the first variant,
reanalysis is performed on both the analysis problem and the adjoint problem, resulting in an
approximate sensitivity analysis, see Eq. (14). In the second variant, reanalysis is performed on
the analysis problem only and then consistent design sensitivities are derived, see Eq. (15).

Worst case approach Demonstrated on the case of three designs (dilated, intermediate and
eroded), the procedure to be repeated within each design cycle until convergence is as follows:

1. Compute factors of K0 corresponding to the dilated structure

(a) K0 = K(ρ̃
d
)

(b) U0 = chol(K0)

2. Solve K(ρ̃
d
)
[
ud λd

]
= [f l] for the dilated design.

3. Variant 1: Compute the approximations
[
ũi λ̃i

]
and

[
ũe λ̃e

]
by performing a few block-

PCG iterations on K(ρ̃
i
)
[
ui λi

]
= [f l] and K(ρ̃

e
) [ue λe] = [f l]; use the factors of K0 as

preconditioners; use
[
ũi λ̃i

]
and

[
ũe λ̃e

]
from the previous design cycle as initial guesses.

Variant 2: Compute the approximations ũi and ũe by performing a few PCG iterations

on K(ρ̃
i
)ui = f and K(ρ̃

e
)ue = f ; use the factors of K0 as preconditioners; use ũi and ũe

from the previous design cycle as initial guesses.

4. Compute design sensitivities for the dilated structure using Eq. (5) followed by the chain
rule (6).

5. Variant 1: Compute approximate design sensitivities for the intermediate and eroded struc-
tures, as in Eq. (14) followed by the chain rule (6).
Variant 2: Compute consistent design sensitivities for the intermediate and eroded struc-
tures following the procedure discussed in Section 3.2. When applying the chain rule to
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obtain the sensitivities with respect to the design variables, note that the preconditioner
depends on the dilated projection while the stiffness matrix depends on the intermediate
or eroded projection.

6. Update the design variables ρ by solving a min-max problem using MMA.

Stochastic approach Similarly, in the stochastic approach the procedure to be repeated
within each design cycle until convergence is as follows:

1. Compute factors of K0 corresponding to a uniformly dilated structure with η = ηmin

(a) K0 = K(ρ̃
d
)

(b) U0 = chol(K0)

2. Variant 1: For each of the events represented by the random vector ξ(θ), compute the

approximation
[
ũ λ̃

]
by performing a few block-PCG iterations on K(ρ, ξ) [u λ] = [f l];

use the factors of K0 as preconditioners; use
[
ũ λ̃

]
corresponding to the same event in the

previous design cycle as an initial guess.
Variant 2: For each of the events represented by the random vector ξ(θ), compute the
approximation ũ by performing a few PCG iterations on K(ρ, ξ)u = f ; use the factors of
K0 as preconditioners; use ũ corresponding to the same event in the previous design cycle
as an initial guess.

3. Variant 1: For each of the events represented by the random vector ξ(θ), compute approx-
imate design sensitivities as in Eq. (14) followed by the chain rule (6).
Variant 2: For each of the events represented by the random vector ξ(θ), compute consis-
tent design sensitivities following the procedure discussed in Section 3.2. When applying
the chain rule to obtain the sensitivities with respect to the design variables, note that the
preconditioner depends on the most dilated projection while the stiffness matrix depends
on the particular random projection.

4. Compute the sensitivities of the stochastic objective and volume constraint as described
in Section 2.2.

5. Update the design variables ρ using MMA.

4 Examples

In this section we present several results of robust topology optimization based on efficient
reanalysis. The main purpose is to examine whether manufacturing-tolerant designs can be
obtained while avoiding the exact solution of the finite element analyses, thus achieving a sat-
isfactory qualitative result in an efficient manner. Furthermore, we would like to gain insight
regarding the trade-off between the accuracy and the efficiency of our proposed approach. For a
fair comparison, the settings of the example problems follow directly those presented by Wang
et al. [2011] and Schevenels et al. [2011].

Two robust design problems are considered: a force inverter design using the worst case
approach and a gripper design using the stochastic approach. The problems are solved with
various resolutions of the reanalysis procedure, represented by the maximum allowed number
of PCG iterations which varies between 1 to 10. Both implementations of reanalysis techniques
denoted ‘variant 1’ and ‘variant 2’ are examined. Each optimization problem is solved with a
fixed number of 300 design cycles. Within each cycle, an approximate sub-problem is generated
and solved by the Method of Moving Asymptotes - MMA [Svanberg, 1987]. In all examples, the
initial design is a uniform distribution of material that satisfies the volume constraint.
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The projection functions are driven gradually towards a true Heaviside step function by dou-
bling the value of the parameter β every 50 design cycles, beginning with 1 and ending with 32.
In the context of applying the reanalysis approach, every ‘jump’ in β poses an obstacle because
of the significant changes to the projected density distribution at these cycles. Consequently, the
initial guess for the PCG procedure may be a bad starting point and the accuracy of reanalysis
could be unsatisfactory. In order to overcome this difficulty, a maximum number of 10 PCG it-
erations is allowed every time β is increased, regardless of the number of PCG iterations allowed
in the particular experiment. The additional computational cost is relatively low because this
safety measure is taken only once every 50 design cycles.

We note that there is a strong relation between the continuation scheme governing the value
of the parameter β and the expected accuracy of reanalysis. For low values of β, the projection
functions for various values of the threshold η are similar. This means that in the first stages
of the optimization, we are basically evaluating a set of very similar designs. Consequently, the
errors associated with approximate reanalysis are relatively small in the first 50 to 100 design
cycles. In fact, it is observed that for the first 50 design cycles when β = 1, reanalysis with
5-6 PCG iterations yields an accurate solution. As β is increased, also the errors due to the
approximate evaluation of the response become larger.

4.1 Example 1: force inverter design, worst case formulation

In this example we aim at reproducing one of the results reported by Wang et al. [2011] using
the reanalysis-based procedure. In particular, we refer to the robust design of a force inverter
(see Section 2.1) where the dilated, intermediate and eroded designs correspond to the threshold
values η = 0.3, η = 0.5 and η = 0.7 respectively. The problem is solved on a 200× 100 FE mesh
(square 4-node, bi-linear elements) and the density filter radius is 5.6 times the length of a single
element. For further details regarding the problem setting the reader is referred to Wang et al.
[2011].

In the design of a force inverter, it is well-known that a strong local minimum is encountered
in the first design cycles when the output displacement changes sign from positive to negative.
In order to avoid this local minimum, the min-max formulation is replaced by a simple sum of
the three objectives for the first 10 design cycles in both implementations by Sigmund [2009]
and Wang et al. [2011]. Accordingly, when using reanalysis procedures, a maximum number of
10 PCG iterations is allowed for the first 10 design cycles. This means that an accurate analysis
is achieved in practice because at these early design cycles only up to 6 PCG iterations were
required to reach the tolerance of 1e− 6 in terms of relative residual forces.

Optimized designs obtained using efficient reanalysis are shown and compared to those gen-
erated with full factorizations in Figures 7 and 8. Examining the various layouts, it can be
clearly seen that even rough approximations (corresponding to very few PCG reanalysis itera-
tions) are sufficiently accurate in order to satisfy the objectives of robust topology optimization:
1) The optimized designs are robust with respect to over- and under-etching; 2) Local length
scale control is achieved on both solid and void regions of the intermediate design; and 3) Crisp
black and white designs are obtained.

The performance of the optimized inverters in terms of output displacement is presented in
Table 3. Opposite to standard expectations, variant 1 involving approximate sensitivity analysis
yields results closer to those obtained with the full solves, compared to variant 2 where consistent
sensitivities are derived. This can be seen by examining both the output displacements as well as
the norms of the differences in design variables, shown in Table 4. With approximate sensitivity
analysis, all the results are practically identical to the results using three full solves. This
demonstrates the tolerance of the optimization program towards inexact gradient information,
a phenomenon that was observed also in previous studies on efficient topology optimization
procedures [Amir et al., 2010; Amir and Sigmund, 2011]. With consistent sensitivity analysis, the
reanalysis approach appears to converge towards the result of the full procedure as the number
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(a) Optimized designs obtained with a reanalysis procedure, 1 PCG iteration. f = {−2.144,−2.307,−2.144}

(b) Optimized designs obtained with a reanalysis procedure, 3 PCG iterations. f = {−2.143,−2.306,−2.143}

(c) Optimized designs obtained with a reanalysis procedure, 5 PCG iterations. f = {−2.143,−2.307,−2.143}

(d) Optimized designs obtained with a standard procedure. f = {−2.144,−2.308,−2.144}

Figure 7: Optimized layouts and performance of robust force invert-
ers obtained using reanalysis procedures with approximate sensitivity
analysis. In the bottom figure, results of the standard procedure are
presented for comparison.
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(a) Optimized designs obtained with a reanalysis procedure, 1 PCG iteration. f = {−1.960,−2.104,−1.961}

(b) Optimized designs obtained with a reanalysis procedure, 3 PCG iterations. f = {−2.132,−2.294,−2.132}

(c) Optimized designs obtained with a reanalysis procedure, 5 PCG iterations. f = {−2.135,−2.303,−2.135}

(d) Optimized designs obtained with a standard procedure. f = {−2.144,−2.308,−2.144}

Figure 8: Optimized layouts and performance of robust force inverters
obtained using reanalysis procedures with consistent sensitivity anal-
ysis. In the bottom figure, results of the standard procedure are pre-
sented for comparison.
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of PCG iterations is increased. When only 1 PCG iteration is performed, a large difference in
the value of the final objective is observed - 8.6% compared to the full procedure. This can also
be seen in the optimized layouts which have the same topology but differ in shape. Nevertheless,
when 2 or more PCG iterations are used, the differences in objective function become rather
small and the final layouts and objectives are almost identical to those corresponding to the full
procedure.

Table 3: Output displacement of the force inverter

Variant 1 Variant 2

PCG iterations η = 0.3 η = 0.5 η = 0.7 η = 0.3 η = 0.5 η = 0.7

1 -2.144 -2.307 -2.144 -1.960 -2.104 -1.961
2 -2.141 -2.307 -2.141 -2.112 -2.275 -2.112
3 -2.143 -2.306 -2.143 -2.132 -2.294 -2.132
4 -2.141 -2.307 -2.139 -2.129 -2.298 -2.129
5 -2.143 -2.307 -2.143 -2.135 -2.303 -2.135
10 -2.146 -2.311 -2.146 -2.143 -2.308 -2.143

Direct solves -2.144 -2.308 -2.144 -2.144 -2.308 -2.144

Table 4: Differences in optimized designs of the force inverter

PCG iterations ‖ρ− ρstd‖, variant 1 ‖ρ− ρstd‖, variant 2

1 12.1606 47.2594
2 15.4202 33.8070
3 10.7955 24.8957
4 11.0450 23.0477
5 10.1269 20.4201
10 9.8739 17.2166

As pointed out above, the optimization program seems to be rather insensitive to inaccuracies
in the gradients supplied to it. Accordingly, the implementation of variant 1 leads to better
results than that of variant 2. The approximation errors associated with employing reanalysis
are plotted in Figure 9. As observed also in previous studies, the errors in primal (analysis)
equations are significantly smaller than in the adjoint equations, presumably due to the problem
setting. Nevertheless, the outcome of the optimization process is accurate despite errors in the
order of up to 10% (in terms of the relative norm of the residual) in the solution of the adjoint
problem.

Robustness of the design is achieved with all approximate solutions. This can be observed
by examining Figure 10, where the actual performance (output displacement) of the designs for
a wide range of erosion / dilation operations is depicted. The designs utilized for this purpose
are those generated using consistent sensitivity analysis. Nevertheless, the same behavior is
expected when evaluating the designs obtained with approximate sensitivities. In fact, judging
by the results in Table 3 and by the layouts in Figure 7, they should perform even better.

4.2 Example 2: compliant gripper design, stochastic formulation

In this example we aim at reproducing one of the results reported by Schevenels et al. [2011] using
reanalysis-based procedures. In particular, we refer to the robust design of a gripper mechanism
(see Section 2.2), taking into account non-uniform spatially varying errors. Over- and under-
etching are represented by randomly varying the threshold value η in the range 0.4 ≤ η ≤ 0.6.
For the optimization process, the mean and standard deviation of the gripping performance
are estimated by means of a Monte Carlo simulation with 100 random realizations. Using the
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(a) Reanalysis with 1 block-PCG iteration.
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(b) Reanalysis with 3 block-PCG iterations.
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(c) Reanalysis with 5 block-PCG iterations.
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(d) Reanalysis with 10 block-PCG iterations.

Figure 9: Approximation errors associated with the reanalysis proce-
dure throughout 300 design cycles of the force inverter. Errors are
measured in terms of the relative norms of residual forces.
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Figure 10: Actual performance of the optimized force inverters us-
ing consistent sensitivity analysis. Optimization considered only η =
{0.3, 0.5, 0.7} but robust performance is achieved for a wider range of
uniform errors simulated by 0.1 ≤ η ≤ 0.7, even with rough approx-
imations in the reanalysis. All optimized designs fail when excessive
erosion (η > 0.7) is considered.
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optimized ‘blueprint’ design, a finer Monte Carlo simulation is performed with 3000 random
samples to obtain a more accurate estimate of the mean and standard deviation. The problem
is solved on a 200× 200 FE mesh and the density filter radius is 8.4 times the length of a single
element. For further details regarding the problem setting the reader is referred to Schevenels
et al. [2011].

Optimized designs obtained using efficient reanalysis are shown and compared to those gen-
erated by standard procedures in Figures 11 and 12. The layouts represent the blueprint design
corresponding to a uniform projection with a threshold η = 0.5. As was the case for the ro-
bust force inverter, also this example demonstrates that approximate procedures are capable
of generating robust designs with local length scale control. The layouts corresponding to a
reanalysis-based optimization are practically identical to that obtained using the full proce-
dure. Even with only a single PCG iteration, a hinge-free robust design is generated, though its
performance is not as good as of the other designs.

(a) Optimized designs obtained with a
reanalysis procedure, 1 PCG iteration.
f0 = −1.8582,mf = −1.7859, σf =
0.068, CI = (−1.7883,−1.7835)

(b) Optimized designs obtained with a
reanalysis procedure, 3 PCG iterations.
f0 = −1.8666,mf = −1.8188, σf =
0.036, CI = (−1.8201,−1.8175)

(c) Optimized designs obtained with a
reanalysis procedure, 5 PCG iterations.
f0 = −1.8649,mf = −1.8172, σf =
0.036, CI = (−1.8185,−1.8159)

(d) Optimized designs obtained
with a standard procedure.
f0 = −1.8656,mf = −1.8174, σf =
0.036, CI = (−1.8187,−1.8161)

Figure 11: Optimized layouts and performance of robust grippers ob-
tained using reanalysis procedures with approximate sensitivity analy-
sis. Confidence intervals (CI ) are computed for 95% probability. In the
bottom right figure, the result of the standard procedure is presented
for comparison.
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(a) Optimized designs obtained with a
reanalysis procedure, 1 PCG iteration.
f0 = −1.8039,mf = −1.7486, σf =
0.041, CI = (−1.7501,−1.7471)

(b) Optimized designs obtained with a
reanalysis procedure, 3 PCG iterations.
f0 = −1.8460,mf = −1.8045, σf =
0.035, CI = (−1.8058,−1.8032)

(c) Optimized designs obtained with a
reanalysis procedure, 5 PCG iterations.
f0 = −1.8628,mf = −1.8151, σf =
0.036, CI = (−1.8164,−1.8138)

(d) Optimized designs obtained
with a standard procedure.
f0 = −1.8656,mf = −1.8174, σf =
0.036, CI = (−1.8187,−1.8161)

Figure 12: Optimized layouts and performance of robust grippers ob-
tained using reanalysis procedures with consistent sensitivity analysis.
Confidence intervals (CI ) are computed for 95% probability. In the
bottom right figure, the result of the standard procedure is presented
for comparison.

The evaluated performance of the optimized grippers is presented in Table 5. We focus on
two quantities: f0, the gripping performance of the blueprint design; and mf +σf , the stochastic
performance estimated using 3000 random realizations. As was the case in the previous example,
variant 1 again appears to yield better results than variant 2. However, when only a single PCG
iteration is performed, the standard deviation corresponding to the design optimized with variant
1 is significantly higher than for all other designs. This is not the case when employing variant 2
where the standard deviation is similar for all the designs. Another advantage of using consistent
sensitivity analysis is the monotonous convergence towards the result of the full procedure as
the number of PCG iterations is increased, as can be observed also in Figure 13.
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Table 5: Performance of the gripper mechanism

Variant 1 Variant 2

PCG iterations f0 mf + σf σf f0 mf + σf σf
1 -1.8582 -1.7180 0.0679 -1.8039 -1.7077 0.0409
2 -1.8668 -1.7832 0.0355 -1.8172 -1.7397 0.0305
3 -1.8666 -1.7832 0.0356 -1.8460 -1.7693 0.0352
4 -1.8681 -1.7828 0.0360 -1.8567 -1.7770 0.0330
5 -1.8649 -1.7817 0.0355 -1.8628 -1.7790 0.0361
10 -1.8604 -1.7814 0.0344 -1.8648 -1.7822 0.0354

Direct solves -1.8656 -1.7814 0.0360 -1.8656 -1.7814 0.0360
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Figure 13: Actual performance of the optimized grippers for differ-
ent accuracies of the reanalysis procedure with consistent sensitivity
analysis.

4.3 Example 3: re-using the reference design in consecutive design cycles

An interesting extension of the presented approach is to combine it with reanalysis procedures
that are based on re-using the factorization of the reference design in subsequent design cycles
[Amir et al., 2009; Amir and Sigmund, 2011]. This means reanalysis is performed both in a ‘par-
allel’ manner (multiple designs, same design cycle) as well as in a ‘forward’ manner (consecutive
design cycles). A thorough examination of the prospects of such an approach is left for future
work, but some promising results are given in the following.

We return to the worst-case design of a force inverter discussed in Section 4.1. The aim is
to re-use factorizations corresponding to the dilated design while maintaining accuracy of the
optimization process. A new factorization is performed if one of the following conditions is met:
1) First 10 design cycles; 2) The relative norm of the residual in the solution for the dilated
structure exceeds 1e − 4; 3) 10 consecutive design cycles were performed since the previous
factorization. If at least one of the conditions is fulfilled, the stiffness matrix of the dilated
structure is decomposed and reanalysis is performed for the other two structures. Otherwise,
reanalysis is utilized to evaluate all three structures. The maximum number of PCG iterations
was set to 5, except for the first 10 cycles and for the cycles corresponding to the doubling of β
where 10 PCG iterations are allowed.

Implementing variant 1 based on approximate sensitivity analysis, the achieved objective
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value was −2.1192 while variant 2 with consistent sensitivities reached an objective of −2.0764.
These results correspond to relative differences of 1.2% and 3.2% respectively, compared to the
objective achieved with full solves. The number of factorizations performed was 67 in the variant
1 experiment and 66 in the variant 2 experiment, compared to 900 in a standard approach and
300 in the reanalysis approach discussed throughout this article. Examining the optimized
layouts, the goals of robust design are satisfied despite the minor difference in performance. In
conclusion, this extended reanalysis approach is well worth exploring because further reduction
in computational cost appears to be possible.

4.4 Actual savings in computation

The actual computational speedup expected to be achieved by implementing the proposed ap-
proach is estimated using the force inverter problem with various aspect ratios and corresponding
FE mesh sizes. Executing a FORTRAN code, the running time of a single reanalysis was mea-
sured relatively to the running time of a standard FE direct solve. For this purpose variant 2 was
implemented but the computational effort involved in variant 1 is roughly the same: the cost of
performing a PCG iteration followed by a reverse adjoint-CG iteration is similar to the cost of
performing a single block-PCG iteration. The relative computing times, measured in percentage
of the time spent on a direct solve, alongside the achieved objective values, are presented in
Table 6. We note that the output performance depends on the aspect ratio so objectives should
only be compared with other results obtained on the same FE mesh.

Table 6: Relative time for one reanalysis and objective values for var-
ious worst-case force inverter design problems

FE mesh 400× 200 400× 300 400× 400 600× 300

DOF 161,202 241,402 321,602 361,802

Time Objective Time Objective Time Objective Time Objective
1 PCG iter. 10.2% -1.8596 8.8% -1.8633 10.2% -1.7172 7.7% -1.7883
2 PCG iter. 18.1% -1.9915 15.5% -1.9091 12.9% -1.7524 13.3% -1.8930
3 PCG iter. 24.4% -2.0046 21.5% -1.8830 18.5% -1.7516 21.4% -1.9550
4 PCG iter. 31.8% -2.0046 28.7% -1.8819 25.9% -1.7581 24.3% -1.9494
5 PCG iter. 38.2% -2.0126 34.8% -1.8852 29.9% -1.7599 29.5% -1.9511
10 PCG iter. 65.7% -2.0198 56.8% -1.8858 48.9% -1.7609 50.2% -1.9632

Direct solve 100.0% -2.0300 100.0% -1.8860 100.0% -1.7590 100.0% -1.9720

In the reanalysis schemes, the major cost is due to right-hand solves (2 per PCG iteration)
and matrix-vector products (4 per PCG iteration if consistent sensitivities are derived). Denoting
n as the number of degrees of freedom; b the bandwidth of the stiffness matrix; and i the number
of PCG iterations, the number of operations performed in reanalysis is proportional to n× b× i
whereas the cost of factorization is proportional to n × b2. This means that the relative cost
of reanalysis reduces as the bandwidth increases. On the other hand, it is expected that the
number of PCG iterations required to achieve sufficiently accurate reanalysis will increase with
mesh refinement. For the four discretizations in Table 6, the theoretical relative times for one
reanalysis with 10 PCG iterations are estimated as 40.2%, 26.7%, 20.0% and 26.7% respectively.

Some insight regarding the trade-off between the efficiency of reanalysis and the accuracy in
the outcome of optimization is provided in Figure 14, which is based on the results from Table
6. In the experiments conducted, fairly accurate outcome (difference in performance smaller
than 1%) was achieved for the computational cost of around 30% compared to a direct solve.
We note that calculations based on operation counts lead to much more promising savings than
those achieved in our experiments. For example, a single reanalysis on the 600× 300 mesh with
10 PCG iterations is predicted to be more than 3 times faster than a direct solve, while a factor
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of only 2 was achieved in the experiment. This means that actual savings in larger problems
depend not only on the properties of the problem but also on aspects of the implementation
that are beyond the scope of the current study, such as: computer specifications; quality of
programming; and availability of efficient scientific computing libraries.
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Figure 14: Trade-off between accuracy and efficiency based on numer-
ical solution of various worst-case force inverter design problems.

Clearly, the benefit of applying reanalysis techniques increases with the number of structures
to be evaluated within a single optimization cycle. For the purpose of this discussion, we assume
a sufficiently accurate reanalysis takes 30% of the time needed for a direct solve. Then in the
worst case approach with three designs, the time spent on solving the nested analysis problem
will be roughly 53% of the time spent if three direct solves were performed. In the stochastic
approach, distribution of the problem to parallel processors must be considered due to the large
number of designs. Then the actual savings depend on the number of designs evaluated on a
single processor. For example, if 1000 designs are evaluated and 100 processors are available,
each processor will perform one factorization (of the reference design) followed by 10 reanalyses.
This means the evaluation of 10 structures will take 40% of the time compared to 10 direct
solves.

5 Conclusions

An efficient approach to robust topology optimization was presented. The high computational
effort of solving multiple FE analyses is decreased by utilizing reanalysis procedures. Addressing
two representative design problems, it was demonstrated that the benefits of applying a robust
formulation can be achieved for a significantly reduced computational cost.

The reanalysis procedures applied in this study are based on performing a single stiffness
matrix factorization per design cycle, corresponding to a ‘reference’ design. This factorization is
then re-used in a reanalysis scheme to obtain approximations of the responses of multiple designs,
the number of which may vary between a few to several hundreds or thousands, depending on
the robust formulation employed. It was shown that using the uniformly dilated design as a
reference design is a very effective choice, leading to a rapid reduction in the approximation
errors in the first few reanalysis iterations.
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Two computational schemes were tested, involving either an approximate or a consistent
sensitivity analysis. For the test cases considered, the approximate scheme denoted ‘variant 1’
appears to give more accurate results but this is not necessarily the case in general. Practical
implementation of variant 1 is quite straightforward because it only requires a PCG (or prefer-
ably block-PCG) solver in addition to the code for robust topology optimization. Variant 2
is more consistent from a mathematical perspective but it requires the implementation of an
adjoint sensitivity analysis for early termination of a PCG solver. Readers who are interested in
further exploring this approach are welcome to contact the corresponding author for receiving
a MATLAB or FORTRAN code containing the dedicated subroutine.

According to numerical experiments and predictions based on operation counts, the compu-
tational cost of multiple FE analyses can be reduced by at least 50% while maintaining sufficient
accuracy. The extent of the actual savings depends on the properties of the problem in hand as
well as on the efficiency of the computer code. Based on the results of the current study as well
as on the conclusions of previous investigations, we believe that the key for deriving reanalysis
procedures that yield sufficient accuracy for minimal computational cost lies in linking reanaly-
sis and optimization. This means that ultimatively, the required accuracy of reanalysis will be
defined rigorously within the optimization routine according to the progress of optimization.

A short glimpse into future work was given, where the exploitation of approximate reanaly-
sis was extended to accommodate the use of a single matrix factorization within several design
cycles. This was achieved by combining the present approach with previous developments re-
garding the integration of reanalysis into standard topology optimization procedures [Amir et al.,
2009]. Another extension of the current study is to consider the case where a factorization can-
not be stored due to memory limits. Then, reanalysis can be performed based on re-using a
preconditioner that is related to the reference design and that requires less memory than the
Cholesky factor.
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