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Optimizing stiffness-to-volume trade-off

Focus is on classical problem statements, seeking the stiffest design:

Minimize compliance s.t. constraint on volume / weight;

Minimize volume / weight s.t. constraint on compliance.

Why are these important?

Conceptual design phase of load-bearing components;

Integrated analysis & design for architects and designers;

Well-established - provide test cases for research and for
formulating new procedures.
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The need for efficient procedures
The aim: Improve computational efficiency.
The motivation:

Increasing interest from architectural community → development of
plug-ins and add-ons to CAD software;

Interactivity is crucial! → a computational tool to “play” with.

Topopt App (Aage et al. 2013):
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The need for efficient procedures
The aim: Improve computational efficiency.
The motivation:

Increasing interest from architectural community → development of
plug-ins and add-ons to CAD software;

Interactivity is crucial! → a computational tool to “play” with.

Rhino-Grasshopper component:
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The need for efficient procedures
Approaches for reducing computational effort:

Multi-resolution / multi-scale: e.g. Kim and Yoon 2000;
Stainko 2006; MTOP - Nguyen et al. 2010, 2012; Guest and
Smith Genut 2010;

Parallel procedures: e.g. Borrvall and Petersson 2001; Kim et al.
2004; Vemaganti and Lawrence 2005; Mahdavi et al. 2006;
Evgrafov et al. 2008; Aage and Lazarov 2013;

GPU implementation: e.g. Wadbro and Berggren 2009; Schmidt
and Schulz 2011; Suresh 2013; Zegard and Paulino 2013;

Recycling Krylov subspaces: Wang et al. 2007.

Still room for advancements:

High-resolution 2-D and 3-D are still very challenging on standard
computers - main aim of current study;

Insight also relevant for high-performance parallel environments.
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Problem formulation: minimum compliance

min
ρ

fc = fTu

s.t.: gv =
N∑

e=1

ve ρ̄e − V ? ≤ 0

0 ≤ ρe ≤ 1 e = 1, ...,N

with: K(ρ̄)u = f

ρ̄ represents filtered densities.

Modified SIMP E (ρ̄) = Emin + (Emax − Emin)ρ̄p.

Sensitivities are ∂fc
∂ρ̄e

= −uT ∂K
∂ρ̄e

u.

Solution obtained by optimality criteria or nonlinear programming.

Computational cost dominated by solving K(ρ̄)u = f.
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Problem formulation: minimum volume

min
ρ

fv =
1

V
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ve ρ̄e

s.t.: gc = fTu− c? ≤ 0

0 ≤ ρe ≤ 1 e = 1, ...,N
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ρ̄ represents filtered densities.
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Reducing computational effort by approximate reanalysis

min
ρ

fc = fT ũ

s.t.: gv =
N∑

e=1

ve ρ̄e − V ? ≤ 0

0 ≤ ρe ≤ 1 e = 1, ...,N

with: K(ρ̄)ũ ≈ f

Following the Combined Approximations (CA) approach (Kirsch 1991):

Split the stiffness matrix: (K0 + ∆K)u = f
Introduce the recurrence: K0uk = f − ∆Kuk−1

Expand the series: B ≡ K−1
0 ∆K

u = (I − B + B2 − B3 + ...)u0

K0u0 = f
K0ui = −∆Kui−1

Use a few terms as basis vectors: ũ = u1y1 + u2y2 + ...+ usys = RBy
Solve a reduced system: RT

B KRBy = RT
B f

Further reading: Monographs by Kirsch 2002, 2008; Amir et al. 2009

Revisiting Approximate Reanalysis in Topology Optimization 11/29



Reducing computational effort by approximate reanalysis

min
ρ

fc = fT ũ
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CA is a particular iterative solver

Kirsch, Kočvara and Zowe 2002: CA is a particular case of the PCG
method - the preconditioner is the Cholesky factorization K0 = UT

0 U0.

“Reanalysis” ≈ “Recycled Preconditioning”;

Implementation as PCG is numerically stable:
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PCG procedure
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Original basis

Orthonormal basis, assuming
orthonormality

Next step: blend reanalysis into robust formulations (multiple designs)...
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Robust formulations in topology optimization

Manufacturing errors pose a challenge in the design of micro
mechanisms:

On projection methods, convergence and robust formulations in topology optimization

Sketches of the considered test examples are shown in
Fig. 2. The first example considers a compliant inverter
design problem drawn in Fig. 2a which was defined as
a benchmark example for filtering schemes in Sigmund
(2007). The objective is to maximize the displacement uout

in the negative direction, for applied force fin = 1 and

(a)

(b)

(c)

Fig. 2 a Design domain and boundary conditions for the compliant
mechanism inverter. b Design domain and boundary conditions for the
heat conduction problem. c Design domain and boundary conditions
for the compliant mechanism gripper

spring stiffness coefficients kin = 1 and kout = 0.001.
The volume fraction is V ∗ = 0.3, and Young’s moduli for
the solid and the void phases are E0 = 1.0 and Emin =
10−9, respectively. The second example is a heat conduc-
tion problem, where the objective is to transfer effectively
heat generated in the design domain. The objective can be
written as f (ρ) = fTu. The conductivity of the solid is set
to E0 = 1, and the minimum conductivity for the void phase
is Emin = 10−3. The loading is a distributed unit thermal
load. The third example considers compliant gripper design,
where the objective is to maximize the displacement uout

for applied force fin = 1, and spring stiffness coefficients
kin = 1 and kout = 0.005. The mechanical properties
and the volume fraction are the same as for the compliant
inverter. The penalization parameter in (2) is taken to be
p = 3 for all of the presented examples.

3 Filtering

Setting the physical density in (1) to be equal to the design
variable, i.e. ¯̃ρi = ρi , leads to a mesh dependent solu-
tion. Instead of obtaining a better description of the design
by refining the finite element mesh, the topology optimiza-
tion process might add thin details (small solid or void
regions), comparable with the mesh size, and might con-
verge to a design with completely different topology. Hence,
the length scale in the obtained design becomes depen-
dent on mesh size. Furthermore, for low order element dis-
cretization the design might suffer from the well known
checkerboard pathology (Díaz and Sigmund 1995; Jog and
Haber 1996). In order to avoid these problems the origi-
nal design problem (1) needs to be regularized. Various
techniques have been proposed in the literature (Bendsøe
and Sigmund 2004; Sigmund and Petersson 1998). Here
the mesh independent density filtering (Bruns and Tortorelli
2001; Bourdin 2001) is used as a basis to ensure existence
of solutions. The main idea is to define the physical ele-
ment density to be a weighted average of the neighboring
design variables, where the neighborhood is defined by a
circle in 2D or sphere in 3D with specified radius. Applying
regularization to the original problem leads to gray transi-
tion regions with intermediate densities between 0 and 1. In
many problems (e.g. compliance problems) the transition
regions are not important and a simple contour plot will
provide good interpretations for a final solid/void design.
However, for problems with more complex physics and/or
objective functions (like electrostatic actuators or compli-
ant mechanisms) practical realizations of these designs are
difficult and may provide wrong physical interpretations.
Hence, projection techniques which project the filtered
designs into 0/1 space have recently been proposed in the
literature, e.g. Guest et al. (2004), Sigmund (2007), Xu et al.

On projection methods, convergence and robust formulations in topology optimization

(a) Threshold projection η = 0,
f = −2.29, fυ = 0.3, Mnd = 7.51%

(b) Threshold projection η = 1,
f = −2.42, fυ = 0.3, Mnd = 6.57%

(c) Multiple phase f = −1.91, fυ = 0.3, Mnd = 9.34% (d) Threshold projection, η = 0.5,
f = −2.50, fv = 0.3, Mnd = 0.05%

(e) Threshold projection (tanh), η = 0.5,
f = −2.51, fυ = 0.3, Mnd = 0.10%

Fig. 3 Topology optimization of compliant inverter based on different filters. The filter support is shown with circle in subfigure e

respectively. The filter radius for all designs is set to R =
5.6L/200. The value for the projection parameter in (8) is
doubled every 50 topology optimization iterations or at con-
vergence, with maximum set to βmax = 128. The initial
value is β = 1. The discreteness of the obtained designs is
measured by a gray level indicator (Sigmund 2007)

Mnd =
∑n

i=1 4 ¯̃ρi
(
1 − ¯̃ρi

)

n
× 100% (13)

If all elements have intermediate density, i.e. ¯̃ρi = 0.5, the
value of the indicator is 100%. If all elements have density
0 or 1 the value of the indicator is Mnd = 0%.

4.1 Compliant mechanism design

Optimized topologies for the compliant inverter problem
(Fig. 2a) using different filters are shown in Fig. 3. For
most of the designs one or two-node connected hinges can
be observed. Minimum length scale for the solid phase is
ensured when η = 0 (Fig. 3a). In this case the void phase
does not have any minimum length scale which is demon-
strated by the sharp corners around the hinge. For η = 1
(Fig. 3b) the length scale is imposed on the void phase
preventing the concentrated hinge but not the formation of
a very thin hinge. In the multiple phase projection case
(Fig. 3c), length scale is supposed to be imposed on both
phases, however, the design consists of relatively large gray

More robust design can be achieved by e.g. a worst-case approach
with multiple designs accounting for uniform errors:

F. Wang et al.

2. while |�ρ|∞ ≤ �ρmax and i ≤ imax and β ≤ βmax

do

-- i = i + 1
-- Compute ¯̃ρe, ¯̃ρi and ¯̃ρd using (8).
-- Solve the three FEM problems K( ¯̃ρi )ui = f,

K( ¯̃ρe)ue = f and K( ¯̃ρd
)ud = f.

-- Compute the sensitivities for the three designs
using (7).

-- Update the design variables.
-- if [mod(i,20) =1 ] update the volume fraction of the

dilated structure V ∗
d = V ∗

Vi
Vd such that the volume

of the intermediate design Vi becomes equal to V ∗.
-- if [mod(i,50) = 1 or |�ρ|∞ ≤ 0.01] and [β ≤ βmax]

then β = 2β

where V ∗ and Vi are the prescribed and the current volume
fraction for the intermediate design, respectively. The de-
sign updates are performed using the method of moving
asymptotes (MMA) by Svanberg (1987). Robust designs
for the considered examples are demonstrated in Figs. 7, 8
and 9.

5.2 Heat conduction

Results obtained using the robust formulation, given by
(14) for the heat conduction problem, are shown in Fig. 7.
Two different filter radii are used in the simulation R =
5.6L/200 and R = 8.4L/200. The dilated and the eroded
designs are obtained for η = 0.2 and η = 0.3. All designs
possess high contrast with gray index indicator for almost

R
=

5.
6,

η
η

η
η

=
0.

3

(a) Eroded design
f = −2.15, fυ = 0.250, Mnd = 0.18 f = −2.30, fυ = − υ

= − υ = − υ = − υ

= − υ = − υ = − υ

= − υ = − υ = − υ

= 0.300, Mnd = 0.49
(b) Intermediate design (c) Dilated design

f 2.15, f = 0.347, Mnd = 0.23

R
=

5.
6,

=
0.

2

(d) Eroded design
f 1.86, f = 0.219, Mnd = 0.22

(e) Intermediate design
f 2.22, f = 0.300, Mnd = 0.32

(f) Dilated design
f 1.86, f = 0.377, Mnd = 0.25

R
=

8,
4,

=
0.

3

(g) Eroded design
f 1.76, f = 0.220, Mnd = 0.53

(h) Intermediate design
f 2.01, f = 0.300, Mnd = 0.57

(i) Dilated design
f 1.76, f = 0.371, Mnd = 0.37

R
=

8.
4,

=
0.

2

(j) Eroded design
f 1.40, f = 0.180, Mnd = 0.55

(k) Intermediate design
f 1.83, f = 0.300, Mnd = 0.34

(l) Dilated design
f 1.40, f = 0.406, Mnd = 0.37

Fig. 8 Robust design of compliant inverter for different parameter sets

Further reading: Sigmund 2009; Wang et al. 2011; Schevenels et al. 2011
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Reanalysis is better with a stiffer preconditioner
Examining Kirsch’s CA series:

u =
(

I−
(
K−1

0 ∆K
)

+
(
K−1

0 ∆K
)2 −

(
K−1

0 ∆K
)3

+ ...
)

u0

If K0 � K then convergence is guaranteed;

For any pair of designs, convergence is faster if the stiffer one plays the
role of the preconditioner.
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k = 10, k0 = 12, |δk|k0
= 0.167

k = 12, k0 = 10, |δk|k0
= 0.200

k = 8, k0 = 12, |δk|k0
= 0.333

k = 12, k0 = 8, |δk|k0
= 0.500

k = 8, k0 = 10, |δk|k0
= 0.200

k = 10, k0 = 8, |δk|k0
= 0.250
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Factor 1, solve 3
Factor 1, solve 5
Factor 3, solve 1
Factor 3, solve 5
Factor 5, solve 1
Factor 5, solve 3

Further reading: Amir et al. 2012 (1=dilated; 3=intermediate; 5=eroded)
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Revisiting reanalysis in stiffness-to-volume procedures

During optimization iterations:

Minimum compliance s.t. volume constraint: Design is stiffened
while approaching the allowable amount of material;

Minimum volume s.t. compliance constraint: Material is removed
while approaching the compliance requirement → design is
typically softened.
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Revisiting reanalysis in stiffness-to-volume procedures
During optimization iterations:

Minimum compliance s.t. volume constraint: Design is stiffened
while approaching the allowable amount of material;
Minimum volume s.t. compliance constraint: Material is removed
while approaching the compliance requirement → design is
typically softened;
When reanalysis is employed, the ‘preconditioner’ K0 corresponds
to a previous design cycle.

ũk ≈
(

I−K
(
ρ̄k−l

)−1
∆K +

(
−K

(
ρ̄k−l

)−1
∆K

)2
+(

−K
(
ρ̄k−l

)−1
∆K

)3
+ ...

)
uk−l

Minimize volume → stiffer preconditioning → efficient reanalysis
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Necessary building block: OC procedure
Minor obstacle:

Min. compliance s.t. volume: OC uses bi-section scheme,
constraint is linear - no need to re-evaluate for every inner design
update;

Min. volume s.t. compliance: Constraint is nonlinear, needs to be
evaluated for every inner design update → not very efficient...

Linear approximation of the compliance constraint:

g̃c (Λ) = gk
c +

N∑
e=1

∂gc
∂ρe

∣∣∣∣
ρke

(
ρk+1
e (Λ)− ρke

)
≈ 0

Reciprocal approximation of the compliance constraint:

g̃c (Λ) = gk
c +

N∑
e=1

∂gc
∂ρe

∣∣∣∣
ρke

ρke
ρk+1
e (Λ)

(
ρk+1
e (Λ)− ρke

)
≈ 0
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Results: 2-D toy problem

Min. volume leads to fewer PCG iterations and smaller errors:

Formulation Objective
Normalized Matrix PCG
constraint factorizations iterations

Min. compliance, standard fc = 136.1
gv = 3.16 · 10−8

200 —
V ? = 0.35 × N

Min. volume, standard fv = 0.35
gc = −2.65 · 10−6

200 —
c? = 136.1

Min. compliance, reanalysis fc = 136.0
gv = 7.21 · 10−7

25 565
V ? = 0.35 × N

Min. volume, reanalysis fv = 0.35
gc = −3.11 · 10−6

22 369
c? = 136.1

?

n
e
ly

 =
 1

0
0

nelx = 200

0.5

1
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Extension to 3-D using MGCG

Matrix factorization is impractical for 3-D problems;

Multigrid-PCG (MGCG) is used as the accurate solver;

MGCG exhibits mesh-independent convergence, even for high
contrast topologies;

“Reanalysis” is replaced by recycling the multigrid preconditioner.

80 × 40 × 40 elements, 4.1 · 105 DOF
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64 × 16 × 48 elements, 1.6 · 105 DOF

Further reading: Tatebe and Oyanagi 1994, Ashby and Falgout 1996, Amir et al. 2014
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Relaxed MGCG convergence

Alternative stopping criteria based on value of target functional:∣∣fT ũi − ũT
i Kũi
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Arioli’s stopping criteria related to FE discretization error:
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Further reading: Amir et al. 2010, Arioli 2004, Amir et al. 2014
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i−1

∂K
∂ρ̄e
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Efficiency in 3-D

80× 40× 40 cantilever, 50 design cycles

Procedure Objective Constraint MGCG/PCG it. MATLAB time
MinC-ACC fc = 5, 562 V ? = 0.120 × N 2,535 1,053.31
MinV-ACC fv = 0.114 c? = 5, 562 2,005 896.05
MinV-RE5 fv = 0.114 c? = 5, 562 956 685.08
MinV-MFRE5 fv = 0.114 c? = 5, 562 900 544.91
MinV-SM-MFRE5 fv = 0.114 c? = 5, 562 440 484.71
MinC-ICPCG fc = 5, 560 V ? = 0.120 × N 34,174 4,974.98

64× 16× 48 bridge, 50 design cycles

Procedure Objective Constraint MGCG/PCG it. MATLAB time
MinC-ACC fc = 4.326 · 105 V ? = 0.1 × N 2,168 354.78
MinV-ACC fv = 0.0969 c? = 4.326 · 105 1,791 320.13
MinV-MFRE5 fv = 0.0967 c? = 4.326 · 105 942 210.49
MinV-SM-MFRE5 fv = 0.0968 c? = 4.326 · 105 346 176.12
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Summary

An efficient procedure for continuum structural topology
optimization was presented;

Computational time is reduced by exploiting “stiff” preconditioning
in reanalysis-based optimization;

Reanalysis concepts applicable to 2-D problems are extended to
3-D in the form of recycled preconditioning within a general MGCG
framework;

Run time of the minimum volume procedure was roughly twice
faster than that of a standard minimum compliance procedure;

No compromise on the quality of the results in terms of the
compliance-to-weight trade-off;

A step towards the effective integration of 3-D topology
optimization into CAD software and mobile applications.
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QUESTIONS?
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Approximating gc(Λ)
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MGCG iterations
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MGCG iterations
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