Efficient Computational Procedures for Topology Optimization of Nonlinear Structures

Oded Amir¹, Mathias Stolpe² and Ole Sigmund³

Technical University of Denmark ¹ PhD Student, Department of Mathematics ² Department of Mathematics ³ Department of Mechanical Engineering

ECCM 2010, Paris, May 17 2010

Introduction - what is this presentation about?

- Examining computational procedures for topology optimization of structures that exhibit nonlinear response.
- The nested approach is taken -> the **computational bottleneck** is in performing the **nonlinear finite element analysis**.
- Case studies include either **geometric nonlinearities** (large displacements and rotations) or **material nonlinearities** (elasto-plasticity).

Main theme

When performing the nonlinear structural analysis within a certain design cycle, computational effort can be reduced by re-using information corresponding to previous design cycles.

DTU Mathematics Department of Mathematics

4 D b 4 B b 4 B b 4 B b

Modeling with geometric nonlinearities (GNL):

- Considering instability and buckling.
- Optimal design is expected to exhibit large deformations.
- (e.g. Buhl et al. 2000, Pedersen et al. 2001, Kemmler et al. 2005).

Modeling with material nonlinearities (MNL):

- Maximizing energy absorption due to plastic strain (metals).
- Different strengths in tension and compression (concrete, rock).
- (e.g. Yuge & Kikuchi 1995, Swan & Kosaka 1997, Maute et al. 1998).

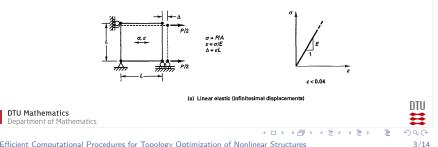
(日)

Modeling with geometric nonlinearities (GNL):

- Considering instability and buckling.
- Optimal design is expected to exhibit large deformations.
- (e.g. Buhl et al. 2000, Pedersen et al. 2001, Kemmler et al. 2005).

Modeling with material nonlinearities (MNL):

- Maximizing energy absorption due to plastic strain (metals).
- **Different strengths** in tension and compression (concrete, rock).
- (e.g. Yuge & Kikuchi 1995, Swan & Kosaka 1997, Maute et al. 1998).



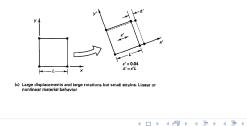
Modeling with geometric nonlinearities (GNL):

- Considering instability and buckling.
- Optimal design is expected to exhibit large deformations.
- (e.g. Buhl et al. 2000, Pedersen et al. 2001, Kemmler et al. 2005).

Modeling with material nonlinearities (MNL):

DTU Mathematics

- Maximizing energy absorption due to plastic strain (metals).
- Different strengths in tension and compression (concrete, rock).
- (e.g. Yuge & Kikuchi 1995, Swan & Kosaka 1997, Maute et al. 1998).

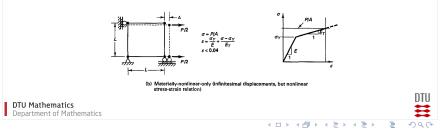


Modeling with geometric nonlinearities (GNL):

- Considering instability and buckling.
- Optimal design is expected to exhibit large deformations.
- (e.g. Buhl et al. 2000, Pedersen et al. 2001, Kemmler et al. 2005).

Modeling with material nonlinearities (MNL):

- Maximizing energy absorption due to plastic strain (metals).
- Different strengths in tension and compression (concrete, rock).
- (e.g. Yuge & Kikuchi 1995, Swan & Kosaka 1997, Maute et al. 1998).

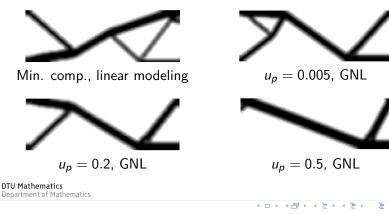


The optimization problem - GNL

$$\begin{split} \min_{\rho} c(\rho) &= -\theta \widehat{\mathbf{f}}^T \mathbf{u} \quad (\text{with prescribed } u_{\rho}) \\ \text{s.t.:} & \sum_{e=1}^{N} v_e \rho_e \leq V \quad (\text{volume constraint}) \\ & 0 < \rho_{min} \leq \rho_e \leq 1 \quad (\text{element densities}) \\ \text{with:} & \mathbf{R} = \mathbf{f}_{int} - \theta \widehat{\mathbf{f}} = \mathbf{0} \quad (\text{equilibrium}) \\ &^* \text{ The aim is to maximize the end-compliance corresponding to a load $\theta \widehat{\mathbf{f}}$ and a prescribed displacement u_{ρ} at a certain DOF.
* Sensitivity analysis requires the solution of an adjoint system: $\frac{\partial f_{int}}{\partial u}^T \lambda = -\theta \widehat{\mathbf{f}} (\text{with prescribed } \lambda_{\rho}). \\ &^* \frac{\partial c}{\partial \rho_e} = -\lambda^T \frac{\partial f_{int}}{\partial \rho_e}. \end{split}$$$

Effect of GNL modeling

Topologies for $V = 0.25 \times V_{total}$



Efficient Computational Procedures for Topology Optimization of Nonlinear Structures

DTU

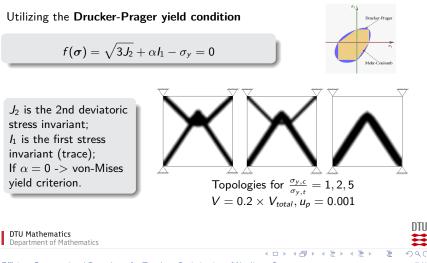
The optimization problem - MNL

$$\begin{array}{lll} \min_{\rho} c(\rho) &=& -\theta_N \widehat{\mathbf{f}}^T \mathbf{u}_N & (\text{with prescribed } u_p) \\ \text{s.t.:} & \sum_{e=1}^N v_e \rho_e \leq V & (\text{volume constraint}) \\ & 0 < \rho_{\min} \leq \rho_e \leq 1 & (\text{element densities}) \\ \text{with:} & \mathbf{R}_n = \mathbf{0} & n = 1, ..., N & (\text{path-dependent equilibrium}) \\ & \mathbf{H}_n = \mathbf{0} & n = 1, ..., N & (\text{local elasto-plastic state}) \\ & * \text{ The aim is to maximize the end-compliance corresponding to a load $\theta \widehat{\mathbf{f}}$ and a prescribed displacement u_p at a certain DOF. \\ & * \text{ Incremental solution is mandatory due to path-dependency.} \\ & * \text{ Sensitivity analysis involves solving a backwards-incremental, coupled adjoint system (performed following the framework by Michaleris et al. 1994).} \\ \end{array}$$

Efficient Computational Procedures for Topology Optimization of Nonlinear Structures

イロト (得) (ヨ) (ヨ) - ヨ

Effect of MNL modeling



Examining computational procedures

The focus is on the solution of the nonlinear nested analysis problem using **direct methods**.

- The problem is linearized using the Newton-Raphson iterative procedure.
- Automatic **displacement control** is utilized.
- Incrementation of the displacement is mandatory only for MNL.

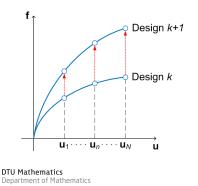
Extra cost of sensitivity analysis:

- GNL: Solve adjoint linear system with K_T corresponding to the converged state, R = 0.
- MNL:

- * Solve multiple linear systems with \mathbf{K}_{T} 's corresponding to the converged states at the end of each increment, $\mathbf{R}_{n} = \mathbf{0}$.
- * Adjoint load for increment n depends on the solution of the adjoint system for increment n + 1.

DTU Mathematics Department of Mathematics

One possibility is to use **u** and θ corresponding to design cycle k as an **initial guess** for the Newton-Raphson solution within design cycle k+1 -> reduce the number of Newton iterations.

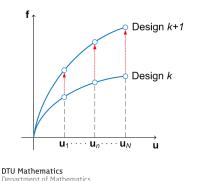


GNL, $u_p = 0.5$, 100 design cycles

Procedure	Total	Newton
	incr.	iter.
Standard	130	1561
Re-use u	130	976

3 N A 3 N

One possibility is to use **u** and θ corresponding to design cycle k as an **initial guess** for the Newton-Raphson solution within design cycle k+1 -> reduce the number of Newton iterations.

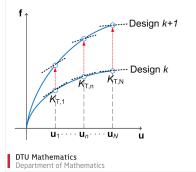


MNL, $u_p = 0.001$, 100 design cycles

Procedure	Total	Newton
Tiocedure	incr.	iter.
Standard, $\frac{\sigma_{y,c}}{\sigma_{y,t}} = 2$	200	563
Re-use u , $\frac{\sigma_{y,c}^{\gamma,c}}{\sigma_{y,t}} = 2$	200	350
Standard, $\frac{\sigma_{y,c}}{\sigma_{y,t}} = 5$	200	589
Re-use u , $\frac{\sigma_{y,c}^{y,c}}{\sigma_{y,t}} = 5$	200	244

3 N A 3 N

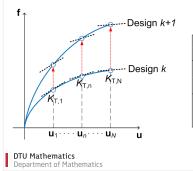
Additionally, we can use K_T corresponding to design cycle k as an approximation of the tangent stiffness in a **Modified Newton-Raphson** solution within design cycle k+1 -> reduce the number of matrix factorizations. The re-used K_T 's can be those used in the adjoint solution, where $\mathbf{R} = \mathbf{0}$.



GNL,	uр	=	0.5,	100	design	cycles
------	----	---	------	-----	--------	--------

Procedure	Newton	Matrix	
Frocedure	iter.	factor.	
Standard	1561	1561	
Re-use u & K	1335	814	

Additionally, we can use K_T corresponding to design cycle k as an approximation of the tangent stiffness in a **Modified Newton-Raphson** solution within design cycle k+1 -> reduce the number of matrix factorizations. The re-used K_T 's can be those used in the adjoint solution, where $\mathbf{R} = \mathbf{0}$.



MNL, $u_p = 0.001$, 100 design cycles

Newton	Matrix
iter.	factor.
563	563
801	187
589	589
471	189
	iter. 563 801 589

The modified Newton approach can be further enhanced in order to reduce the number of Newton iterations and matrix factorizations. Using the same K_T 's, **approximate reanalysis** can be performed, leading to a Newton-Krylov procedure (following Kirsch, Kočvara & Zowe 2002).

Newton iteration

$$\mathbf{K}_{T}^{k+1}\delta\mathbf{u} = \mathbf{R}$$

Reanalysis equation

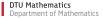
 $(\mathbf{K}_T^k + \Delta \mathbf{K})\delta \mathbf{u} = \mathbf{R}$

An approximation to $\delta \mathbf{u}$ is obtained -> not as good as a full Newton step but better than a modified Newton step.

DTU Mathematics Department of Mathematics MNL, $u_p = 0.001$, 100 design cycles

Procedure	Newton iter.	Matrix factor.
Re-use u & K , $\frac{\sigma_{y,c}}{\sigma_{y,t}} = 2$	801	187
Reanalysis, $\frac{\sigma_{y,c}}{\sigma_{y,t}} = 2$	387	138
Re-use u & K , $\frac{\sigma_{y,c}}{\sigma_{y,t}} = 5$	471	189
Reanalysis, $\frac{\sigma_{y,c}}{\sigma_{y,t}} = 5$	303	177

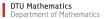
• Structural topology optimization considering geometric or material nonlinearities, following the nested approach.



Efficient Computational Procedures for Topology Optimization of Nonlinear Structures

э

- Structural topology optimization considering geometric or material nonlinearities, following the nested approach.
- Computational effort can be reduced by re-using information when solving the analysis problem:



Efficient Computational Procedures for Topology Optimization of Nonlinear Structures

- Structural topology optimization considering geometric or material nonlinearities, following the nested approach.
- Computational effort can be reduced by re-using information when solving the analysis problem:
 - Solution of the analysis as an initial guess for the analysis in the next design cycle.

- Structural topology optimization considering geometric or material nonlinearities, following the nested approach.
- Computational effort can be reduced by re-using information when solving the analysis problem:
 - Solution of the analysis as an initial guess for the analysis in the next design cycle.
 - Factorization of the tangent stiffness matrix as an approximation of the tangent stiffness in a Modified Newton-Raphson procedure in the next design cycle.

- Structural topology optimization considering geometric or material nonlinearities, following the nested approach.
- Computational effort can be reduced by re-using information when solving the analysis problem:
 - Solution of the analysis as an initial guess for the analysis in the next design cycle.
 - Factorization of the tangent stiffness matrix as an approximation of the tangent stiffness in a Modified Newton-Raphson procedure in the next design cycle.
- Questions?

DTU Mathematics Department of Mathematics

イロト 人間 ト イヨト イヨト

- Structural topology optimization considering geometric or material nonlinearities, following the nested approach.
- Computational effort can be reduced by re-using information when solving the analysis problem:
 - Solution of the analysis as an initial guess for the analysis in the next design cycle.
 - Factorization of the tangent stiffness matrix as an approximation of the tangent stiffness in a Modified Newton-Raphson procedure in the next design cycle.
- Questions?

Thank you for listening!

(日)

200

14/14

DTU Mathematics Department of Mathematics