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Introduction - what is this presentation about?

Examining computational procedures for topology optimization of
structures that exhibit nonlinear response.
The nested approach is taken -> the computational bottleneck is in
performing the nonlinear finite element analysis.
Case studies include either geometric nonlinearities (large displacements
and rotations) or material nonlinearities (elasto-plasticity).

Main theme
When performing the nonlinear structural analysis within a
certain design cycle, computational effort can be reduced by
re-using information corresponding to previous design cycles.
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Why consider nonlinear structural response?
Modeling with geometric nonlinearities (GNL):

Considering instability and buckling.
Optimal design is expected to exhibit large deformations.
(e.g. Buhl et al. 2000, Pedersen et al. 2001, Kemmler et al. 2005).

Modeling with material nonlinearities (MNL):
Maximizing energy absorption due to plastic strain (metals).
Different strengths in tension and compression (concrete, rock).
(e.g. Yuge & Kikuchi 1995, Swan & Kosaka 1997, Maute et al. 1998).
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The optimization problem - GNL

min
ρ

c(ρ) = −θf̂Tu (with prescribed up)

s.t.:
N∑

e=1

veρe ≤ V (volume constraint)

0 < ρmin ≤ ρe ≤ 1 (element densities)
with: R = fint − θf̂ = 0 (equilibrium)

* The aim is to maximize the end-compliance corresponding to a
load θf̂ and a prescribed displacement up at a certain DOF.

* Sensitivity analysis requires the solution of an adjoint system:
∂fint
∂u

T
λ = −θf̂ (with prescribed λp).

* ∂c
∂ρe

= −λT ∂fint
∂ρe

.
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Effect of GNL modeling

Topologies for V = 0.25× Vtotal

Min. comp., linear modeling up = 0.005, GNL

up = 0.2, GNL up = 0.5, GNL
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The optimization problem - MNL

min
ρ

c(ρ) = −θN f̂TuN (with prescribed up)

s.t.:
N∑

e=1

veρe ≤ V (volume constraint)

0 < ρmin ≤ ρe ≤ 1 (element densities)
with: Rn = 0 n = 1, ...,N (path-dependent equilibrium)

Hn = 0 n = 1, ...,N (local elasto-plastic state)

* The aim is to maximize the end-compliance corresponding to a
load θf̂ and a prescribed displacement up at a certain DOF.

* Incremental solution is mandatory due to path-dependency.
* Sensitivity analysis involves solving a backwards-incremental,

coupled adjoint system (performed following the framework by
Michaleris et al. 1994).
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Effect of MNL modeling

Utilizing the Drucker-Prager yield condition

f (σ) =
√

3J2 + αI1 − σy = 0

J2 is the 2nd deviatoric
stress invariant;
I1 is the first stress
invariant (trace);
If α = 0 -> von-Mises
yield criterion. Topologies for σy,c

σy,t
= 1, 2, 5

V = 0.2× Vtotal , up = 0.001
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Examining computational procedures
The focus is on the solution of the nonlinear nested analysis problem using
direct methods.

The problem is linearized using the Newton-Raphson iterative procedure.
Automatic displacement control is utilized.
Incrementation of the displacement is mandatory only for MNL.

Extra cost of sensitivity analysis:
GNL: Solve adjoint linear system with KT corresponding to the
converged state, R = 0.
MNL:

* Solve multiple linear systems with KT ’s corresponding to
the converged states at the end of each increment,
Rn = 0.

* Adjoint load for increment n depends on the solution of
the adjoint system for increment n + 1.
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Re-using information

One possibility is to use u and θ corresponding to design cycle k
as an initial guess for the Newton-Raphson solution within design
cycle k+1 -> reduce the number of Newton iterations.

GNL, up = 0.5, 100 design cycles

Procedure Total Newton
incr. iter.

Standard 130 1561
Re-use u 130 976
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Re-using information

One possibility is to use u and θ corresponding to design cycle k
as an initial guess for the Newton-Raphson solution within design
cycle k+1 -> reduce the number of Newton iterations.

MNL, up = 0.001, 100 design cycles

Procedure Total Newton
incr. iter.

Standard, σy,c
σy,t

= 2 200 563
Re-use u, σy,c

σy,t
= 2 200 350

Standard, σy,c
σy,t

= 5 200 589
Re-use u, σy,c

σy,t
= 5 200 244
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Re-using information

Additionally, we can use KT corresponding to design cycle k as an
approximation of the tangent stiffness in a Modified Newton-Raphson
solution within design cycle k+1 -> reduce the number of matrix
factorizations. The re-used KT ’s can be those used in the adjoint solution,
where R = 0.

GNL, up = 0.5, 100 design cycles

Procedure Newton Matrix
iter. factor.

Standard 1561 1561
Re-use u & K 1335 814
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Re-using information

Additionally, we can use KT corresponding to design cycle k as an
approximation of the tangent stiffness in a Modified Newton-Raphson
solution within design cycle k+1 -> reduce the number of matrix
factorizations. The re-used KT ’s can be those used in the adjoint solution,
where R = 0.

MNL, up = 0.001, 100 design cycles

Procedure Newton Matrix
iter. factor.

Standard, σy,c
σy,t

= 2 563 563
Re-use u & K, σy,c

σy,t
= 2 801 187

Standard, σy,c
σy,t

= 5 589 589
Re-use u & K, σy,c

σy,t
= 5 471 189

Efficient Computational Procedures for Topology Optimization of Nonlinear Structures 12/14



Re-using information

The modified Newton approach can be further enhanced in order to reduce the
number of Newton iterations and matrix factorizations. Using the same KT ’s,
approximate reanalysis can be performed, leading to a Newton-Krylov
procedure (following Kirsch, Kočvara & Zowe 2002).

Newton iteration

Kk+1
T δu = R

Reanalysis equation

(Kk
T + ∆K)δu = R

An approximation to δu is
obtained -> not as good as a full
Newton step but better than a
modified Newton step.

MNL, up = 0.001, 100 design cycles

Procedure Newton Matrix
iter. factor.

Re-use u & K, σy,c
σy,t

= 2 801 187
Reanalysis, σy,c

σy,t
= 2 387 138

Re-use u & K, σy,c
σy,t

= 5 471 189
Reanalysis, σy,c

σy,t
= 5 303 177
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Summary

Structural topology optimization considering geometric or
material nonlinearities, following the nested approach.
Computational effort can be reduced by re-using information
when solving the analysis problem:

Solution of the analysis as an initial guess for the analysis in
the next design cycle.
Factorization of the tangent stiffness matrix as an
approximation of the tangent stiffness in a Modified
Newton-Raphson procedure in the next design cycle.

Questions?

Thank you for listening!
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