Efficient Use of Iterative Solvers in Nested Topology Optimization

Oded Amir*, Mathias Stolpe* and Ole Sigmund**

Technical University of Denmark

* Department of Mathematics

** Department of Mechanical Engineering

June 2, 2009

Introduction - what is this presentation about?

- Nested approach to structural optimization, with focus on topology optimization.
- Iterative solution of the nested equation system using **Krylov** subspace solvers.
- Case studies are from the field of structural mechanics (linear elasticity), so we focus on the use of **Preconditioned Conjugate Gradients** as the iterative solver.

Main theme

Using approximate solutions in the analysis problem can save significant computing time, without affecting the accuracy of the optimization significantly.

DTU Mathematics

Department of Mathematics

(日)

Introduction - the nested approach

The nested approach to topology optimization, demonstrated on a **minimum compliance** problem:

$$\begin{array}{ll} \min_{\rho} c(\rho) &=& \mathbf{f}^{T} \mathbf{u} \quad (\text{compliance}) \\ \text{s.t.:} & & \sum_{e=1}^{N} v_{e} \rho_{e} \leq V \quad (\text{volume constraint}) \\ & & 0 < \rho_{\min} \leq \rho_{e} \leq 1 \quad (\text{element densities}) \\ \text{with:} & & \mathbf{K}(\rho) \mathbf{u} = \mathbf{f} \quad (\text{equilibrium}) \end{array}$$

- * The main computational bottleneck solving the (typically large) system of equations Ku = f (and additional adjoint systems in other problems).
- * Other structural optimization problems may share the same formulation.

Department of Mathematics

DTU Mathematics

Introduction - motivation for this study

In practice, when solving large problems, most of us turn to the iterative family of **Krylov subspace solvers**, e.g. the Conjugate Gradients method with effective preconditioning (PCG):

- Low memory requirements.
- Suitable for parallel computing.

The challenge:

Krylov subspace solvers typically require a **large number of iterations** in order to converge to an accurate solution of the nested problem. Then this should be **repeated for every design iteration**.

DTU Mathematics Department of Mathematics

イロト 人間 とくほ とくほ と

Proposed approximation

The common convergence criterion for PCG (and similar methods):

$$\frac{\left\|\mathbf{f} - \mathbf{K}\mathbf{u}_k\right\|_2}{\left\|\mathbf{f}\right\|_2} = \frac{\left\|\mathbf{r}_k\right\|_2}{\left\|\mathbf{f}\right\|_2} < \epsilon$$

The proposed approximation is \mathbf{u}_m , m < k

$$\frac{\|\mathbf{f} - \mathbf{K}\mathbf{u}_m\|_2}{\|\mathbf{f}\|_2} = \frac{\|\mathbf{r}_m\|_2}{\|\mathbf{f}\|_2} >> \epsilon$$

DTU Mathematics Department of Mathematics

- * A typical value of the tolerance ϵ is 10^{-6} .
- * **u**_k is in practice, the **accurate** solution.
- * How should the PCG cycle *m* be chosen?
- * Is it enough to use a slack ϵ ?

PCG performance - minimum compliance (1)

PCG performance - minimum compliance (2)

7/15

Alternative convergence criteria

Question: How to choose the approximation \mathbf{u}_m so that the objective $(\mathbf{f}^T \mathbf{u}_m)$ and sensitivities $(-\mathbf{u}_m^T \frac{\partial \mathbf{K}}{\partial \rho_e} \mathbf{u}_m)$ are sufficiently accurate?

Initial guess $=$ 0	Initial guess $= {f u}({m ho}_{\it old})$
Measure the relative change in K-norm of the solution: $\frac{\mathbf{u}_m^T \mathbf{K} \mathbf{u}_m - \mathbf{u}_{m-1}^T \mathbf{K} \mathbf{u}_{m-1}}{\mathbf{u}_{m-1}^T \mathbf{K} \mathbf{u}_{m-1}} < \epsilon$	Measure the relative difference between compliance and K-norm of the solution $\frac{\left \mathbf{f}^{T}\mathbf{u}_{m}-\mathbf{u}_{m}^{T}\mathbf{K}\mathbf{u}_{m}\right }{\mathbf{u}_{m}^{T}\mathbf{K}\mathbf{u}_{m}} < \epsilon$
DTU Mathematics Department of Mathematics	

The force inverter problem

The nested approach to topology optimization, demonstrated on a **force inverter** problem:

日 ト 4 冊

Efficient Use of Iterative Solvers in Nested Topology Optimization

ъ

PCG performance - force inverter (1)

Relative residual, $\mathbf{I}^T \mathbf{u}$, $\mathbf{f}^T \lambda$ and $\lambda^T \mathbf{K} \mathbf{u}$

Remarks

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

* Both r.h.s. solved together by block-PCG.

*
$$\mathbf{I}^T \mathbf{u}_i = \mathbf{f}^T \boldsymbol{\lambda}_i = \boldsymbol{\lambda}_i^T \mathbf{K} \mathbf{u}_i$$
 for all PCG iterations *i*.

DTU Mathematics Department of Mathematics

Efficient Use of Iterative Solvers in Nested Topology Optimization

э

PCG performance - force inverter (2)

Relative residual, $I^T u$, $f^T \lambda$ and $\lambda^T K u$

Remarks

I D > I A

- * Initial guess = $\mathbf{u}(\rho_{old}), \lambda(\rho_{old}).$
- * In general: $\mathbf{I}^T \mathbf{u}_i \neq \boldsymbol{\lambda}_i^T \mathbf{K} \mathbf{u}_i.$

* In general:
$$\mathbf{f}^T \boldsymbol{\lambda}_i \neq \boldsymbol{\lambda}_i^T \mathbf{K} \mathbf{u}_i$$
.

• • = • • = •

Department of Mathematics

Efficient Use of Iterative Solvers in Nested Topology Optimization

э

Alternative convergence criteria

Question: How to choose the approximations \mathbf{u}_m and λ_m so that the objective $(\mathbf{I}^T \mathbf{u}_m)$ and sensitivities $(-\lambda_m^T \frac{\partial \mathbf{K}}{\partial \rho_e} \mathbf{u}_m)$ are sufficiently accurate?

Initial guess = **0**

Measure the relative change in the value of the objective:

$$\left|\frac{\mathbf{I}^{T}\mathbf{u}_{m}-\mathbf{I}^{T}\mathbf{u}_{m-1}}{\mathbf{I}^{T}\mathbf{u}_{m-1}}\right| < \epsilon$$

DTU Mathematics Department of Mathematics

of the between the objective and $\mathbf{f}^T \boldsymbol{\lambda}_i$:

$$\left|\frac{\mathbf{I}^{\mathsf{T}}\mathbf{u}_m - \mathbf{f}^{\mathsf{T}}\boldsymbol{\lambda}_m}{\mathbf{f}^{\mathsf{T}}\boldsymbol{\lambda}_m}\right| < \epsilon$$

(日)

Initial guess = $\mathbf{u}(\boldsymbol{\rho}_{old}), \boldsymbol{\lambda}(\boldsymbol{\rho}_{old})$

Measure **also** the relative difference

Example: large scale minimum compliance

- 324,000 elements, 1.03E6 DOF.
- Preconditioned with IC(0).
- \approx 40% reduction in PCG iterations.
- * After 50 design iterations: 0.02% error in objective value.
- After 50 design iterations: Same topology, some differences in boundary regions.

Efficient Use of Iterative Solvers in Nested Topology Optimization

DTU Mathematics

Example: force inverter

- * 7,200 elements, 14,762 DOF.
- * Preconditioned with IC(0).
- * \approx 30% reduction in PCG iterations.
- * After 100 design iterations: 1.5% error in objective value.
- * After 100 design iterations: Same topology but different shape.

-Full solution

Design Iteration

.

• □ ▶ < 同 ▶ <</p>

Efficient Use of Iterative Solvers in Nested Topology Optimization

DTU

Concluding remarks

- Achieved savings: $\approx 40\%$ in 3D minimum compliance, $\approx 30\%$ in 2D force inverter.
- Improving accuracy of force inverter problems and extending to 3D are among future tasks.
- Further interesting extensions:
 - * Other physical models, objective functions.
 - * Other Krylov solvers besides PCG.
- The key point: convergence measures should be related to the objective function and to the corresponding design sensitivities.

DTU Mathematics Department of Mathematics

・ロト ・ 一下・ ・ ヨト・